Wang Aizeng, He Chuan, Zhao Gang, Xu Huixia. A Sufficient and Necessary Criterion for Curvature Monotone Bézier Curves[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(9): 1617-1621. DOI: 10.3724/SP.J.1089.2019.17631
Citation:
Wang Aizeng, He Chuan, Zhao Gang, Xu Huixia. A Sufficient and Necessary Criterion for Curvature Monotone Bézier Curves[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(9): 1617-1621. DOI: 10.3724/SP.J.1089.2019.17631
Wang Aizeng, He Chuan, Zhao Gang, Xu Huixia. A Sufficient and Necessary Criterion for Curvature Monotone Bézier Curves[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(9): 1617-1621. DOI: 10.3724/SP.J.1089.2019.17631
Citation:
Wang Aizeng, He Chuan, Zhao Gang, Xu Huixia. A Sufficient and Necessary Criterion for Curvature Monotone Bézier Curves[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(9): 1617-1621. DOI: 10.3724/SP.J.1089.2019.17631
A Sufficient and Necessary Criterion for Curvature Monotone Bézier Curves
In this paper,we present and prove a sufficient and necessary condition for the monotone curvature of a class of Bézier curves.The point is to repeatedly scale and rotate the previous control edge of Bézier curves to obtain the latter control edge.Several examples are given to show the application of the proposed method.