高级检索
刘袁缘, 谢忠, 周顺平, 刘郑, 王伟明, 刘秀平, 饶伟. 基于条件迭代更新随机森林的非约束人脸特征点精确定位[J]. 计算机辅助设计与图形学学报, 2017, 29(10): 1881-1890.
引用本文: 刘袁缘, 谢忠, 周顺平, 刘郑, 王伟明, 刘秀平, 饶伟. 基于条件迭代更新随机森林的非约束人脸特征点精确定位[J]. 计算机辅助设计与图形学学报, 2017, 29(10): 1881-1890.
Liu Yuanyuan, Xie Zhong, Zhou Shunping, Liu Zheng, Wang Weiming, Liu Xiuping, Rao Wei. Conditional Iteration Updated Random Forests for Unconstrained Facial Feature Location[J]. Journal of Computer-Aided Design & Computer Graphics, 2017, 29(10): 1881-1890.
Citation: Liu Yuanyuan, Xie Zhong, Zhou Shunping, Liu Zheng, Wang Weiming, Liu Xiuping, Rao Wei. Conditional Iteration Updated Random Forests for Unconstrained Facial Feature Location[J]. Journal of Computer-Aided Design & Computer Graphics, 2017, 29(10): 1881-1890.

基于条件迭代更新随机森林的非约束人脸特征点精确定位

Conditional Iteration Updated Random Forests for Unconstrained Facial Feature Location

  • 摘要: 人脸特征点定位是计算机视觉中研究和分析人脸的关键.为了提高在非约束环境中(大姿态变化、遮挡、复杂背景等)人脸特征点定位的准确性和鲁棒性,提出一种基于条件迭代更新随机森林的非约束人脸特征点定位方法.首先,为了克服遮挡和背景噪声的影响,对人脸子区域进行分类,提取人脸正子区域;然后,在人脸正子区域上估计头部姿态,根据估计的头部姿态和人脸局部子区域学习特征点的初始化条件概率模型,定位人脸特征点的初始位置;再依据特征点的初始位置建立人脸误差模型,利用误差模型在线学习并多次迭代更新随机森林的叶子节点,生成新的复合叶子概率模型,包括人脸子块类别、头部姿态、人脸形变模型、误差偏移模型;最后,引入条件权重稀疏投票对复合叶子概率模型进行回归,定位人脸特征点的精确位置.在AFW,LFW和Pointing’04这3个具有挑战性的公共人脸数据库上进行实验的结果表明,该方法在非约束人脸特征点定位中的平均误差值为0.15时,定位准确率超过95%.

     

    Abstract: Facial feature location is important for face analysis in computer vision. In order to enhance accuracy and efficiency in unconstrained environment with various head poses, background, occlusion, illumination and make-up, we propose a conditional iteration updated random forest approach for precise facial feature location. In order to eliminate occlusion and background noise, positive/negative facial patches are classified from a facial area, firstly; then, initial facial feature positions are detected by the trained initial conditional probabilistic model under the condition of 25 head pose models in three local sub-regions; the multiple leaves of random forests are updated using the on-line learning in an iterative way based on the detected facial feature initial position and facial error deformation, which include patches’ classes, head pose probabilities, face deformation model and face error offset model; finally, a conditional weighted sparse voting method is introduced into the interactive regression model for voting final precise facial feature locations. Experiments on the challenging AFW, LFW, and Pointing’04 datasets demonstrated that the average accuracy of our approach has reached 95% with only 0.15 mean errors for facial feature location in unconstrained environment.

     

/

返回文章
返回