高级检索
吴畏, 朱剑宇, 张延, 张玲, 陈北京. 具有隐私保护特性的深度伪造人脸检测模型[J]. 计算机辅助设计与图形学学报.
引用本文: 吴畏, 朱剑宇, 张延, 张玲, 陈北京. 具有隐私保护特性的深度伪造人脸检测模型[J]. 计算机辅助设计与图形学学报.
A Deepfake Face Image Detection Model Supporting Privacy Protection[J]. Journal of Computer-Aided Design & Computer Graphics.
Citation: A Deepfake Face Image Detection Model Supporting Privacy Protection[J]. Journal of Computer-Aided Design & Computer Graphics.

具有隐私保护特性的深度伪造人脸检测模型

A Deepfake Face Image Detection Model Supporting Privacy Protection

  • 摘要: 现有伪脸检测研究全部都是在明文条件下开展, 而人脸图像具有重要的隐私性, 因此研究具有隐私保护特性的伪脸图像检测具有重要意义. 本文首次提出支持隐私保护的深度伪脸检测模型. 该模型采用加性秘密分享框架, 首先在现有基础运算协议的基础上构建三个安全通讯协议, 然后使用不共谋的双服务器构建一个类明文的环境:在构建的安全通讯协议支持下, 双服务器中的预训练好的ResNet50模型交互协同计算, 在不暴露输入的情况下实现安全伪脸检测. 在公开FaceForensics++数据集上的实验表明, 提出的安全检测模型能够在支持隐私保护的前提下实现与明文条件下的ResNet50模型准确率保持一致.

     

    Abstract: Existing researches on deepfake face detection are all performed under plaintext conditions, while face images have significant privacy. Therefore, research on deepfake face image detection supporting privacy protection features is of great importance. This paper proposes a deepfake detection model supporting privacy protection for the first time. The model adopts the framework of additive secret sharing. Firstly, three secure communica-tion protocols are constructed on the basis of the existing fundamental computing protocols, and then a non-colluding dual server is used to construct a plaintext-like environment: with the support of the constructed secure communication protocols, the pre-trained ResNet50 models in dual servers compute interactively and cooperatively, and finally achieve secure deepfake face detection without exposing the in-puts. Experiments on the public available FaceForensics++ dataset show that the proposed security detection model can achieve the same accuracy as the ResNet50 model in plaintext while supporting privacy protection.

     

/

返回文章
返回