高级检索
刘畅, 张玲, 何英豪. 边缘引导和拉普拉斯金字塔分解的古文本图像修复算法[J]. 计算机辅助设计与图形学学报.
引用本文: 刘畅, 张玲, 何英豪. 边缘引导和拉普拉斯金字塔分解的古文本图像修复算法[J]. 计算机辅助设计与图形学学报.
Ancient Text Image Inpainting Algorithm via Edge Guide and Laplacian Pyramid Decomposition[J]. Journal of Computer-Aided Design & Computer Graphics.
Citation: Ancient Text Image Inpainting Algorithm via Edge Guide and Laplacian Pyramid Decomposition[J]. Journal of Computer-Aided Design & Computer Graphics.

边缘引导和拉普拉斯金字塔分解的古文本图像修复算法

Ancient Text Image Inpainting Algorithm via Edge Guide and Laplacian Pyramid Decomposition

  • 摘要: 针对当前图像修复算法应用到古文本图像上时, 出现纹理模糊或结构内容不完整的问题, 提出边缘引导和拉普拉斯金字塔分解的古文本图像修复算法. 首先利用边缘修复网络对古文本图像的边缘结构进行修复, 重建缺损区域的边缘信息; 然后利用预训练的文字学习网络对局部缺损区域进行内容修复, 得到一幅局部内容修复图像, 并进行拉普拉斯分解; 再将拉普拉斯金字塔修复网络利用内容修复网络的低层和高层对图像进行递进修复, 在内容修复网络中引入双交叉编码器和多尺度融合块, 有助于获取更加有效的特征信息并生成纹理结构完整的图像修复结果. 应用在古文本图像数据集的测试集上, 各项图像质量评估指标中, 峰值信噪比(peak signal to noise ratio, PSNR)为34.322, 结构相似性(structural similarity, SSIM)为0.970, 均方根误差(root mean square error, RMSE)为5.203, 表明所提算法是有效的和可行的.

     

    Abstract: Current image inpainting methods are often perform poorly on ancient text images, producing results with blurred textures or incomplete structural content. To address this problem, we propose an inpainting algorithm for ancient text images via edge guide and laplacian pyramid decomposition. We first use an edge restoration network to restore the edge structure for the damaged regions and construct an edge-guided map. Then, we employ the pre-trained text learning network to restore the local damaged regions and obtain a local inpainting image, which is decomposed into a content image and a detail map through laplacian pyramid transform. At last, we build a laplacian pyramid restoration network to inpaint the damaged image by applying the content restoration network on the two layers of laplacian pyramid respectively. The content restoration network introduces a dual cross-encoder and multi-scale fusion blocks to prompt the network to obtain more effective feature information and generate desirable image inpainting results. The superiority quantitative results on the benchmark dataset demonstrate the effectiveness and feasibility of the proposed method, that peak signal to noise ratio (PSNR) is 34.322, structural similarity (SSIM) is 0.970 and root mean square error (RMSE) is 5.203.

     

/

返回文章
返回