高级检索
杨志飞, 施锡泉, 王伟明, 刘秀平. 基于Powell-Sabin细分的参数曲面重建方法[J]. 计算机辅助设计与图形学学报, 2023, 35(12): 1875-1886. DOI: 10.3724/SP.J.1089.2023.2023-00021
引用本文: 杨志飞, 施锡泉, 王伟明, 刘秀平. 基于Powell-Sabin细分的参数曲面重建方法[J]. 计算机辅助设计与图形学学报, 2023, 35(12): 1875-1886. DOI: 10.3724/SP.J.1089.2023.2023-00021
Yang Zhifei, Shi Xiquan, Wang Weiming, Liu Xiuping. A Parameterized Surface Reconstruction Method Based on Powell-Sabin Subdivision[J]. Journal of Computer-Aided Design & Computer Graphics, 2023, 35(12): 1875-1886. DOI: 10.3724/SP.J.1089.2023.2023-00021
Citation: Yang Zhifei, Shi Xiquan, Wang Weiming, Liu Xiuping. A Parameterized Surface Reconstruction Method Based on Powell-Sabin Subdivision[J]. Journal of Computer-Aided Design & Computer Graphics, 2023, 35(12): 1875-1886. DOI: 10.3724/SP.J.1089.2023.2023-00021

基于Powell-Sabin细分的参数曲面重建方法

A Parameterized Surface Reconstruction Method Based on Powell-Sabin Subdivision

  • 摘要: 将复杂几何体网格转换为参数曲面是CAD几何引擎设计中的关键问题.针对赋予四边形粗剖分结构的三角网格模型,提出一种基于Powell-Sabin细分的参数曲面重建方法.首先利用均值参数化方法建立每个粗四边形结构MT到参数域D的映射,同时得到D的三角剖分;然后对进行一次Powell-Sabin细分得到加细三角剖分S,并且利用MT的几何信息构造二元一次样条函数空间SS)中的插值函数S;对D均匀采样之后,利用插值函数S得到规则型值点作为参数曲面表面点的近似;最后建立具有光顺性质的能量函数,求解出双三次B样条曲面的控制点网格,完成曲面重建.实验给出了柱面、鞍面等基础曲面和人头模型等自由曲面的重建结果.数值结果表明,与自适应算法相比,所提方法能够捕获由给定三角网格呈现的几何细节,重建复杂模型的点距均方误差减小38%.

     

    Abstract: The conversion of complex geometric objects represented by triangular meshes into parametric surfaces is a critical issue in the design of CAD geometric engines. For a triangular mesh model with a coarse quadrilateral partitioning structure, this paper proposes a parameterized surface reconstruction method based on the Powell-Sabin subdivision. This paper first employs the mean value parameterization method to establish a mapping from each coarse quadrilateral structure MT to the parameter domain D, and simultaneously obtains the triangular partitioning of D. Then, a single Powell-Sabin subdivision is applied to to achieve a refined triangular partitioning S. Moreover, using the geometric information of MT, an interpolation function S is constructed in the bivariate spline space SS). After uniform sampling of D, S is used to approximate regular-valued points as surface points of the parametric surface. Lastly, by establishing an energy function with smoothness properties, the control point grid of the bicubic B-spline surface is solved to complete the surface reconstruction. Experiments present the reconstruction results of basic surfaces like cylindrical and saddle surfaces, as well as freeform surfaces like human head models. Numerical results indicate that, compared to adaptive algorithms, the proposed method can capture the geometric details presented by the given triangular meshes, reducing the MSE of vertex distances in complex model reconstruction by 38%.

     

/

返回文章
返回