基于仿射不变性特征的冷冻电子断层图像无标记对位
A Marker-free Alignment Method in Cryo-Electron Tomography Based on Affine-invariant Feature
-
摘要: 图像对位是冷冻电子断层三维重构中的重要步骤, 对位精度对于生物大分子的三维重构质量有着至关重要的作用. 无标记对位技术无需在样品制备时加入标记物, 具有适用范围广、无需挑选标记物和不污染样本的优点. 针对无标记对位技术中图像特征信息利用不充分、对位精度不高的问题, 本文提出了一种基于仿射不变性特征的冷冻电子断层图像无标记对位方法, 以充分发掘投影图像中的更多特征点, 进而提高对位精度. 首先通过仿射变换模拟电子断层图像在投影成像时的旋转变换, 在SIFT特征基础上考虑图像间的视角变化, 得到对于平移、旋转、尺度、视角变换都具有不变性的图像特征点, 结合冷冻电子断层显微镜成像特点缩小搜索空间, 大幅度提高了计算效率; 然后通过运动一致性约束去除大量误匹配特征点, 再采用RANSAC方法二次筛选获得正确的特征匹配结果, 以此求解电子断层图像的对位参数. 在对多组电子断层图像序列数据的对位实验结果上表明, 该方法在提高仿射不变性特征计算效率的同时, 有效增加了所保留特征点的数量、减小了重投影误差, 从而提高了冷冻电子断层图像无标记对位方法的精度.Abstract: Alignment in cryogenic electron tomography(CryoET) is an important processing step for biomolecules three-dimensional reconstruction. Alignment accuracy is critical to 3D reconstruction quality. Marker-free alignment has the advantages of wide applicability, not selecting markers, and no contamination from markers in the sample. For solving the problem of insufficient utilization of image features and low alignment accuracy in marker-free alignment method, we propose a marker-free alignment method based on affine-invariant feature. More feature points are exploited in the projection images for improving the alignment accuracy. We simulate the rotation by affine transformation and extract SIFT features which are invariant to translation, rotation, scale, and view transformations. In this process, characteristics of cryo-electron tomography imaging are fully considered to reduce the dimensionality of the simulation space for greatly improving the computational efficiency. Then, a large number of mismatches are removed through motion consistency constraints, and correct feature matches are obtained through the RANSAC method in the second screening, obtaining the alignment parameters of the cryo-electron tomography images. Experiments on the public CryoET datasets indicate that our method effectively increases the number of retained feature points, reduces the reprojection error, improves the accuracy of alignment while improving the efficiency of computing affine invariant features.