高级检索

基于自适应特征校准的区域感知图像和谐化

Region-Aware Image Harmonization via Adaptive Feature Calibration

  • 摘要: 为了进一步提升图像和谐化质量, 提出基于自适应特征校准的区域感知图像和谐化方法. 首先, 采用多层次的编码器提取多尺度特征; 然后, 在跳跃连接处设计自适应特征校准模块, 降低局部含偏特征对解码器重构过程的干扰; 其次, 构建区域感知 Transformer 增强上下文信息交互, 并且在不同尺度上利用背景特征的统计信息调制前景特征; 最后, 通过解码器逐层重构出和谐化结果. 在公开的图像和谐化 iHarmony4 数据集上的实验结果表明, 所提方法在 PSNR, MSE 和 fMSE 指标上分别达到了 39.83 dB, 19.25 和 206.40, 均优于目前的主流方法.

     

    Abstract: To enhance the quality of image harmonization, we propose a region-aware image harmonization method based on adaptive feature calibration. First, multi-layer encoders are utilized to extract multi-scale features. Then, adaptive feature calibration modules are designed in the middle of the skip connection to reduce the impact of local biased features on the decoder’s generation process. Subsequently, the region-aware Transformer is employed to enhance context information interaction and modulate foreground features with statistical information from background features at different scales. Finally, harmonization results are generated through multi-layer decoders. Experimental results on the publicly available iHarmony4 image harmonization dataset demonstrate that the proposed method achieves superior performance, with PSNR, MSE, and fMSE scores of 39.83 dB, 19.25, and 206.40, respectively, outperforming current state-of-the-art methods.

     

/

返回文章
返回