高级检索
王楠, 林绍辉, 齐福霖, 陈玉珑, 李珂, 沈云航, 马利庄. 基于自监督方法的医学影像异常检测[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2023-00339
引用本文: 王楠, 林绍辉, 齐福霖, 陈玉珑, 李珂, 沈云航, 马利庄. 基于自监督方法的医学影像异常检测[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.2023-00339
Nan Wang, Shaohui Lin, Fulin Qi, Yulong Chen, Ke Li, Yunhang Shen, Lizhuang Ma. Self-supervised Learning for Multi-modal Medical Image Segmentation[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2023-00339
Citation: Nan Wang, Shaohui Lin, Fulin Qi, Yulong Chen, Ke Li, Yunhang Shen, Lizhuang Ma. Self-supervised Learning for Multi-modal Medical Image Segmentation[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.2023-00339

基于自监督方法的医学影像异常检测

Self-supervised Learning for Multi-modal Medical Image Segmentation

  • 摘要: 自监督学习(Self-supervised learning, SSL)可以很好地捕捉关于不同概念的通用知识, 从而有利于各种下游的图像分析任务. 然而, 现有的自监督学习方法并没有充分考虑医学图像中必不可少的多模态特征, 以设计一个高效的代理任务. 此外, 它们中的大多数可能会受到从异质数据中学习任务诊断表征的影响. 因此, 他们往往只能带来边际改善. 在本文中提出了一种新的自监督学习方法, 考虑到医学图像分割的多种成像模式, 称为SLeM, 以便为下游分割学习更好的特征表示. 该算法引入了多模态分类任务, 这有利于从多种图像模态中学习丰富的表征. 学习到的表征可以在不同的下游任务中进行后续的微调. 为了有效解决不同时期目标物体形状不同的问题, 本文还提出了一个新的上下文融合块来提取不同大小的肿瘤的特征. 最后, 通过简单的微调将学到的表征转移到下游的多模态医学图像分割任务中, 这可以显著提高性能. 综合实验表明, 所提出的SLeM在BraTS 2019和CHAOS数据集上优于最先进的方法.

     

    Abstract: Self-supervised learning (SSL) can well capture generic knowledge about different concepts,  thereby beneficial for various downstream image analysis tasks. However, existing self-supervised learning SSL methods do not fully consider an essential multimodality characteristic in the medical images to design an efficient and effective proxy task. Additionally, most of them may suffer from learning task-agnostic representations from heterogeneous data. Therefore, they often lead to only marginal improvements. In this paper, we propose a novel self-supervised learning method that considers multiple imaging modalities for medical image segmentation, termed SLeM, to learn better feature representation for downstream segmentation. We introduce the multi-modal classified task, which facilitates rich representation learning from multiple image modalities. The learned representations allow for subsequent fine-tuning on diverse downstream tasks. To effectively solve the problem of diverse target object shapes in different periods, we then propose a new context fusing block (CFB) to extract features for tumors of various sizes. Finally, we transfer the learned representation to the downstream multi-modal medical image segmentation task via simple fine-tuning, which can significantly improve the performance. Comprehensive experiments demonstrate that the proposed SLeM outperforms state-of-the-art methods on BraTS 2019 and CHAOS datasets.

     

/

返回文章
返回