高级检索

空气质量细粒度数据内联关系可视分析系统

Visual Analysis System for Fine-Grained Inline Relationship of Air Quality Data

  • 摘要: 随着数据观测和数字计算技术的快速发展,空气质量数据粒度越来越细致,为研究空气质量的细粒度数据内联关系可视化、辅助理解空气污染物的转化规律提供了数据基础.针对蕴含丰富内联特征的大气质量细粒度数据开发了一个内联关系可视分析系统.首先,基于大气质量数据多维属性设计时空数据维度模型增强数据的时空表达,并提出一种基于深度学习的特征提取方法,将空气质量数据从高维空间映射到支持交互可视分析的低维特征空间;然后,设计了一套多视图联动的可视化系统,帮助用户发现空气污染传输中的细粒度内联关系,理解污染传输途径的数据分布特征.用户实例和用户评价结果表明,该系统是有效的.

     

    Abstract: With the rapid development of data observation and digital computing technology,the granularity of air quality data tends to be fine,which provides a data basis for visualizing data of air quality and under-standing the transformation law of air pollutants.This paper proposes a visual analysis system for inline fea-tures of fine-grained air quality data.We design a spatial-temporal data dimensional model to enhance the spa-tial-temporal expression of the data.We propose a deep learning based scheme that embeds high-dimensional air quality data into a low-dimensional feature space,which supports interactive visual analysis.We implement a multi-view linkage visualization system which assists discover the fine-grained inline relationship in the spread of air pollution and understand the data distribution characteristics of pollution transmission routes.User cases and user evaluation results show that our system is effective.

     

/

返回文章
返回