高级检索

以特征线和高程范围为约束的DEM-cGAN框架

DEM-cGAN Framework Constrained by Feature Lines and Elevation Range

  • 摘要: 目前大规模地形生成方法依赖传统数学方法,缺乏用户控制,实现难度较大.尽管深度学习技术已介入地形生成工作中,但缺少相关的训练数据集,且未对经典生成网络的固有缺陷作出改进.为了获得真实感更强的地形数据,构建了一个由地形特征草图、地形灰度图像、高程分割图像和高程模型组成的数据集,并提出以特征线和高程范围为约束的DEM-cGAN框架,设计了一个双尺度并行生成网络ParallelGen.用户通过输入地形特征草图及高程范围,利用DEM-cGAN获得完整的高程数据.对生成结果从视觉效果、数值分析和地理学层面进行多项实验的结果表明,DEM-cGAN框架能正确地生成最大栅格尺寸为512×512像素的高程数据,并还原特征草图中的起伏走势,符合现实中的地理学规律.

     

    Abstract: Currently,large-scale terrain generation methods still rely on traditional mathematical algorithms,which lack user’s control and are difficult to be realized.Although deep learning techniques have been used in terrain generation,the related training datasets are not publicly available and the inherent defects of classical generative networks have not been improved.To obtain more realistic terrain data,a terrain dataset consisting of feature sketches,grayscale images,elevation segmentation images,and elevation models is created.Also,DEM-cGAN framework constrained by feature lines and elevation range is proposed,and a dual-scale parallel network ParallelGen is designed.Users can obtain elevation data with DEM-cGAN by sketching the terrain feature lines and giving the elevation range.Multiple experiments are conducted on the generated results at the visual,numerical,and geographic levels.The results show that,DEM-cGAN framework can correctly generate elevation data with a maximum raster size of 512×512.And the results reproduce the undulation trend in the feature sketch and conform to the realistic geographic laws.

     

/

返回文章
返回