高级检索

FAGNet: 基于MAFPN和GVR的遥感图像多尺度目标检测算法

FAGNet: Multi-Scale Object Detection Method in Remote Sensing Images by Combining MAFPN and GVR

  • 摘要: 针对大场景遥感图像内容复杂,并且具有目标种类较多、尺度不一、方向多变等特点,导致遥感图像中目标多类多尺度多方向的问题,提出一种基于多尺度注意力特征金字塔网络(MAFPN)以及滑动顶点回归(GVR)机制的遥感图像目标检测方法.首先利用骨干网络提取多层特征作为MAFPN的输入,MAFPN结合特征融合和注意力机制,在融合多个尺度的特征映射的基础上使用通道域注意力和空间域注意力机制来抑制噪声,增强有效特征复用,提高网络对目标多尺度特征的自适应性;将MAFPN输出的融合特征图输入区域建议网络(RPN)生成感兴趣区域,然后将其送入分类/回归网络;在分类/回归网络中使用GVR机制在预测水平框的基础上增加4个顶点偏移比例参数和旋转因子,将水平框转换为旋转框,以减少边框中冗余区域,使预测得到的旋转边框更贴合目标.在DOTA公开数据集上与多种基于卷积神经网络的经典检测算法进行对比的实验结果表明,该方法的平均检测精度得到显著提高,能够更加准确地检测多个尺度以及多个方向的目标,实现了多尺度目标的鲁棒性检测.

     

    Abstract: Remote sensing images of large scenes are complex,and have the characteristics of many catego-ries of objects,different scales and changeable directions,which lead to the problem of multi-class,multi-scale and multi-oriented of objects in remote sensing images.A remote sensing image object detection method based on multi-scale attention feature pyramid network(MAFPN)and gliding vertex regression(GVR)mechanism is proposed.Firstly,multi-layer feature maps are extracted from backbone network as input of MAFPN,which combines feature fusion and attention mechanism.On the basis of fusing feature maps of multi-scale,channel attention and spatial attention mechanisms are used to suppress noise,enhance effective feature reuse,and improve the network’s adaptability to object multi-scale features.The fusion feature map output by MAFPN is input to the region proposal network to generate the regions of interest,and then they will be sent to the classification regression network.The GVR mechanism is used in the object classification regression network and the four vertex offset ratio parameters and rotation factors are added on the basis of predicting the horizontal boxes,which converts the horizontal boxes into a rotating box to reduce the redundant area in the bounding boxes,makes the predicted rotating bounding boxes fit the object more closely.The experimental results on the DOTA public dataset,compared with many classical detection algorithms based on convolutional neural networks,show that the average detection accuracy of the pro-posed method is significantly improved,which can detect objects of multi-scales and multi-oriented more accurately,and achieve the robust detection of multi-scale objects。

     

/

返回文章
返回