高级检索

基于多分支并行空洞卷积的多尺度目标检测算法

Multi-Scale Object Detection Method Based on Multi-Branch Parallel Dilated Convolution

  • 摘要: 针对现有的目标检测算法在提取特征时往往仅使用单一尺度大小的卷积核,忽略了不同尺度特征感受野的差异,从而影响网络对不同尺度目标的检测效果的问题,提出一种基于多分支并行空洞卷积的多尺度目标检测算法.首先,采用基础网络VGG-16对待检测图像进行特征提取;其次,在网络的低层引入多分支并行空洞卷积,对不同扩张率的空洞卷积进行融合,从而获取多尺度特征信息,提高网络对不同尺度特征的提取能力;然后,采用非局部化结构整合特征的全局空间信息,进而增强上下文信息;最后,在不同尺度大小的特征图上执行目标的检测与定位任务.在PASCAL VOC数据集和MS COCO数据集上的实验结果表明,所提算法能有效地提高网络对不同尺度目标的检测准确率,对小目标检测效果有明显改善.

     

    Abstract: Existing object detection algorithms only use a fixed size convolution kernel when extracting fea-tures,ignoring the difference in the receptive field of different scale features,which affects the detection ef-fect of different scale objects.To solve this problem,a multi-scale object detection network based on multi-branch parallel dilated convolution is proposed.Firstly,the basic network VGG-16 is used to extract the features of the image.Secondly,a multi-branch parallel dilated convolution is designed to extract multi-scale features to improve object detection ability of the network.Then,a non-local block is employed to integrate the global spatial information and enhance the context information.Finally,the object detection and location tasks are performed on feature maps with different scales.Experimental results on PASCAL VOC and MS COCO datasets demonstrate that the proposed method can effectively improve the detection accuracy of different scale objects and clearly improve the detection accuracy of small objects.

     

/

返回文章
返回