高级检索
刘进, 亢艳芹, 胡殿麟, 陈阳, 康季槐. 小波域卷积稀疏编码的低剂量CT图像重建[J]. 计算机辅助设计与图形学学报, 2020, 32(11): 1784-1794. DOI: 10.3724/SP.J.1089.2020.18171
引用本文: 刘进, 亢艳芹, 胡殿麟, 陈阳, 康季槐. 小波域卷积稀疏编码的低剂量CT图像重建[J]. 计算机辅助设计与图形学学报, 2020, 32(11): 1784-1794. DOI: 10.3724/SP.J.1089.2020.18171
Liu Jin, Kang Yanqin, Hu Dianlin, Chen Yang, Kang Jihuai. Convolutional Sparse Coding in Wavelet Domain for Low Dose CT Reconstruction[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(11): 1784-1794. DOI: 10.3724/SP.J.1089.2020.18171
Citation: Liu Jin, Kang Yanqin, Hu Dianlin, Chen Yang, Kang Jihuai. Convolutional Sparse Coding in Wavelet Domain for Low Dose CT Reconstruction[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(11): 1784-1794. DOI: 10.3724/SP.J.1089.2020.18171

小波域卷积稀疏编码的低剂量CT图像重建

Convolutional Sparse Coding in Wavelet Domain for Low Dose CT Reconstruction

  • 摘要: 随着CT成像技术的发展,其射线剂量明显降低,然而实现优质成像依然是低剂量CT研究领域中的重点问题.为实现低剂量CT的优质成像,减缓重建图像中伪影及噪声干扰,提出了一种小波域的卷积稀疏编码CT重建算法.该算法是利用预先构建的滤波器集,对重建图像中的小波域高频子带进行卷积稀疏表示,并引入到低剂量CT重建中以构造目标函数.通过重建图像更新和小波域卷积稀疏编码两个步骤的交替优化,实现重建目标函数的求解.在Shepp-Logan模拟数据、AAPM模拟数据与UIH真实数据上进行实验,并与全变差、字典学习、梯度正则化的卷积稀疏编码等进行对照分析,实验结果表明,所提算法可获得噪声伪影少、结构细节对比度高的重建图.最后,参数分析实验表明所提算法易实施且具有良好的参数稳健性.

     

    Abstract: The continuous development of CT imaging techniques has significantly reduced radiation dose to the patient.However,maintaining high image quality in low-dose CT(LDCT)reconstruction is still important concerns.In order to improve the image quality and reduce noise artifact disturbance,we propose a wavelet domain convolutional sparse coding algorithm for LDCT reconstruction.With the predetermined filters,the convolutional sparse coding is introduced in the high frequency sub-band of wavelet domain to construct a new LDCT reconstruction objective function.The CT image and the wavelet domain convolutional sparse coding are sequentially updated using an alternating minimization scheme.Quantitative evaluations on Sheep-Logan phantom,AAPM simulation dataset and UIH real dataset,compared with the traditional total variation,dictionary learning and convolutional sparse coding with gradient regularization reconstruction algorithm,demonstrate that the proposed method can achieve satisfactory performance in terms of noise suppression and structural preservation.Further,the parameters analysis experiments show that this method can be easily implemented with good robustness in parameter setting.

     

/

返回文章
返回