面向乳腺病理图像分类的非相干字典学习及稀疏表示算法
Incoherent Dictionary Learning and Sparse Representation for Breast Histopathological Image Classification
-
摘要: 针对乳腺病理图像分类,提出一种非相干字典学习及其稀疏表示算法.首先针对不同类别的图像,基于在线字典学习算法分别学习各类特定的子字典;其次利用紧框架建立一种非相干字典学习模型,通过交替投影优化字典的相干性、秩与紧框架性,从而有效地约束字典的格拉姆矩阵与参考格拉姆矩阵的距离,获得判别性更强的非相干字典;最后采用子空间旋转方法优化非相干字典的稀疏表示性能.利用乳腺癌数据集BreaKHis进行实验的结果证明,该算法所学习的非相干字典能平衡字典的判别性与稀疏表示性能,在良性肿瘤与恶性肿瘤图像分类上获得了86.0%的分类精度;在良性肿瘤图像中的腺病与纤维腺瘤的分类上获得92.5%的分类精度.Abstract: An incoherent dictionary learning and sparse representation algorithm is proposed for histopathological image classification in this paper.Class-specific sub-dictionaries are firstly learned from each class training samples by exploring online dictionary learning.Furthermore,a novel incoherent dictionary learning model is designed by introducing tight frame.This model can optimize the difference between Gram matrix and reference Gram matrix by alternating projection on coherence,rank and tight frame of dictionary.The high-quality discriminative incoherent dictionary is obtained.To obtain the preferable sparse representation performance,subspace rotation method is utilized to optimize the sparse representation performance of incoherent dictionary.Experimental results on BreaKHis dataset show that the learned incoherent dictionary can trade-off the discriminative ability and sparse representation.The proposed method achieves 86.0%of classification accuracy on benign and malignant tumors image,and 92.5%of classification accuracy on adenosis and fibroadenoma image.