高级检索
刘帅, 刘元宁, 朱晓冬, 林泽江, 杨金阳. 蚁群变异粒子群优化的2次虹膜识别[J]. 计算机辅助设计与图形学学报, 2018, 30(9): 1604-1614. DOI: 10.3724/SP.J.1089.2018.16908
引用本文: 刘帅, 刘元宁, 朱晓冬, 林泽江, 杨金阳. 蚁群变异粒子群优化的2次虹膜识别[J]. 计算机辅助设计与图形学学报, 2018, 30(9): 1604-1614. DOI: 10.3724/SP.J.1089.2018.16908
Liu Shuai, Liu Yuanning, Zhu Xiaodong, Lin Zejiang, Yang Jinyang. Ant Colony Mutation Particle Swarm Optimization for Secondary Iris Recognition[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(9): 1604-1614. DOI: 10.3724/SP.J.1089.2018.16908
Citation: Liu Shuai, Liu Yuanning, Zhu Xiaodong, Lin Zejiang, Yang Jinyang. Ant Colony Mutation Particle Swarm Optimization for Secondary Iris Recognition[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(9): 1604-1614. DOI: 10.3724/SP.J.1089.2018.16908

蚁群变异粒子群优化的2次虹膜识别

Ant Colony Mutation Particle Swarm Optimization for Secondary Iris Recognition

  • 摘要: 针对多类别虹膜识别耗时长、图像容易受到干扰以及识别不准确的问题,提出基于蚁群变异粒子群优化的2次虹膜识别算法.首先用主成分分析法降低虹膜的噪声与冗余;然后通过Gabor滤波与Hamming距离进行首次识别,将虹膜分为淘汰类别与待定类别,淘汰差异较大的虹膜,缩小识别范围,对待定类别用Haar小波与BP神经网络进行2次识别,确定虹膜类别,神经网络连接权重与Gabor滤波参数用蚁群变异法改进的粒子群优化算法优化.与多种算法在不同虹膜库进行比较的实验结果表明,该算法识别性能高,稳定性、鲁棒性好,消耗时间短.

     

    Abstract: Aiming at the problem that multi-categories iris recognition usually takes long time, and is easy interference and inaccuracy of recognition, this paper proposes secondary iris recognition algorithm based on ant colony mutation particle swarm optimization. Firstly, we use principal component analysis to reduce iris noise and redundancy; then use Gabor filtering and Hamming distance for the first recognition, divide iris into eliminated category and undetermined category, eliminate irises which have large difference, narrow recognition range. For the undetermined category, we use Haar wavelet and BP neural network for the sec- ond recognition, determine iris category. Connection weights of neural network and parameters of Gabor filtering are adaptively optimized by ant colony mutation particle swarm optimization. The proposed algo- rithm with many algorithms in different iris libraries are compared. The experimental results show that the proposed algorithm has high recognition performance, good stability, robustness and short time consumption.

     

/

返回文章
返回