高级检索
张蕊, 刘孟轩, 孟晓曼, 武益超. 联合注意力机制和多尺度特征的图像语义分割网络[J]. 计算机辅助设计与图形学学报.
引用本文: 张蕊, 刘孟轩, 孟晓曼, 武益超. 联合注意力机制和多尺度特征的图像语义分割网络[J]. 计算机辅助设计与图形学学报.
Research on Semantic Image Segmentation Network Combining Attention Mechanism and Multi-scale Features[J]. Journal of Computer-Aided Design & Computer Graphics.
Citation: Research on Semantic Image Segmentation Network Combining Attention Mechanism and Multi-scale Features[J]. Journal of Computer-Aided Design & Computer Graphics.

联合注意力机制和多尺度特征的图像语义分割网络

Research on Semantic Image Segmentation Network Combining Attention Mechanism and Multi-scale Features

  • 摘要: 针对卷积神经网络在图像语义分割时存在部分语义信息丢失、边界定位精度较低等问题, 构建了联合注意力机制和多尺度特征的卷积神经网络. 首先基于注意力机制将网络提取到的多尺度特征进行加权融合, 然后采用扩张卷积和全局平均池化聚合多尺度目标信息, 最后采用边界精细粒度特征提取模块对分割边界进行优化. 在多尺度PASCAL VOC2012和高分辨率Cityscapes数据集上的实验结果表明, 所提网络的分割效果显著优于骨干网络ResNet-101, 平均交并比分别提高了12.2%和9.3%.

     

    Abstract: To address the problems of partial semantic information loss and low accuracy of boundary localization when convolutional neural networks are used for image semantic segmentation, this paper constructs a convolutional neural network by combining the attention mechanism and multi-scale features. The model firstly combines the multi-scale features extracted by the network based on the attention mechanism for weighting, then uses dilated convolution and global average pooling to aggregate the multi-scale target information, and finally uses the boundary fine-grained feature extraction module to optimize the segmentation boundary. Experimental results on the multi-scale PASCAL VOC2012 and high-resolution Cityscapes datasets show that the segmentation effect of the network in this paper is significantly better than that of the backbone ResNet-101, and the average cross-merge ratio is improved by 12.2% and 9.3%, respectively.

     

/

返回文章
返回