高级检索
姚伟健, 普园媛, 赵征鹏, 徐丹, 钱文华, 吴昊. 稠密自适应生成对抗网络的爨体字生成模型[J]. 计算机辅助设计与图形学学报.
引用本文: 姚伟健, 普园媛, 赵征鹏, 徐丹, 钱文华, 吴昊. 稠密自适应生成对抗网络的爨体字生成模型[J]. 计算机辅助设计与图形学学报.
Cuan Font Generation Model of Dense Adaptive Generation Adversarial Network[J]. Journal of Computer-Aided Design & Computer Graphics.
Citation: Cuan Font Generation Model of Dense Adaptive Generation Adversarial Network[J]. Journal of Computer-Aided Design & Computer Graphics.

稠密自适应生成对抗网络的爨体字生成模型

Cuan Font Generation Model of Dense Adaptive Generation Adversarial Network

  • 摘要: 爨体字作为典型的衬线字体不同于“黑体”、“微软雅黑”、“等线”这种非衬线字体, 其字形结构十分多样. 为了克服爨体字在生成过程中笔画弯折处容易出现伪影以及模糊的现象, 提出了一种基于稠密自适应生成对抗网络的爨体字风格迁移模型. 首先, 生成器通过稠密自适应卷积块更加充分的提取风格特征和内容特征; 其次, 像素判别器对真实图片和生成图片进行分辨; 然后, 采用对抗损失、迁移损失、梯度损失和边缘损失对生成网络进行参数调节; 最后, 将自行采集的爨体字数据集当作训练集送入模型进行训练. 实验结果证明, 该爨体字风格迁移模型能够有效的学习到风格特征以达到更好的生成效果. 其生成结果在字形大小保持上优于Zi-to-zi模型, 在笔画细节特征的保留上优于StarGANv2以及CycleGAN模型, 并在SSIM和L1loss指标上得到了验证.

     

    Abstract: As a typical serif font, Cuan font is different from the sans serif fonts such as “Heitian”, “Microsoft “Yahei” and “Isoline”, and its glyph structure is very diverse. In order to overcome the phenomenon of artifacts and blurring at the bends of the strokes in the generation process of Cuan fonts, a style transfer model of Cuan fonts based on a dense adaptive generation adversarial network is proposed. First, the generator extracts style features and content features more fully through dense adaptive convolution blocks; Secondly, the pixel discriminator distinguishes the real picture from the generated picture; Then, use adversarial loss, migration loss, gradient loss and edge loss to adjust the parameters of the generation network; Finally, the self-collected Cuan font data set is used as a training set and sent to the model for training. The experimental results prove that the style transfer model of Cuan font can effectively learn style features to achieve better generation effect. The generated results are better than the Zi-to-zi model in terms of font size retention, and better than the StarGANv2 and CycleGAN models in terms of the retention of stroke detail features, and are verified on the SSIM and L1loss indicators.

     

/

返回文章
返回