高级检索
梁远, 姜雨馨, 何盛烽. 融合生成隐编码库先验的人脸去模糊方法[J]. 计算机辅助设计与图形学学报.
引用本文: 梁远, 姜雨馨, 何盛烽. 融合生成隐编码库先验的人脸去模糊方法[J]. 计算机辅助设计与图形学学报.
Yuan Liang, Yuxin Jiang, Shengfeng He. Blind Face Deblurring via Latent Generative Priors[J]. Journal of Computer-Aided Design & Computer Graphics.
Citation: Yuan Liang, Yuxin Jiang, Shengfeng He. Blind Face Deblurring via Latent Generative Priors[J]. Journal of Computer-Aided Design & Computer Graphics.

融合生成隐编码库先验的人脸去模糊方法

Blind Face Deblurring via Latent Generative Priors

  • 摘要: 对抗式神经网络的隐式编码库包含了图像中不同尺度的细节特征, 为更好地结合隐式编码库和图像的不同尺度特征来为图像去除运动模糊, 文中通过多层卷积网络提取模糊图像的多尺度特征, 并由隐式编码库中不同尺度的隐式向量指导产生多尺度的解码特征, 该解码特征在隐式编码库的统一指导下生成去除模糊后的图像. 这种融合多尺度特征而非单一尺度特征的去模糊方法在更多细节上保证了人脸模糊图像的重建和复原. 与当前同样使用隐式编码库进行人脸去模糊的方法比较, 文中方法取得了更好的效果, 在PSNR指标上提升了30%, 在SSIM指标上提升了23%.

     

    Abstract: The latent code of generative adversarial networks contains different scales of detail features in images. To better combine the different scale characteristics of degraded images and the rich information from latent code to perform face image deblurring, we extract the multi-scale features of the blurred face images through a multi-layer convolution network, which is further guided by the latent code of generative adversarial networks to generate the decoded features, which is then further guided by the latent code to generate deblurred images. Through this multi-scale feature-guided scheme rather than single-scale generations, our method ensures the reconstruction and restoration of blurred images in more detail. Compared to the current methods, which also use the latent code of generative adversarial networks, our method achieves better performance, improving 30% on the metric of PSNR and 23% on the metric of SSIM.

     

/

返回文章
返回