高级检索
史松林, 帕孜来马合木提. 结合Transformer和CNN的超声心动图左心室分割算法[J]. 计算机辅助设计与图形学学报.
引用本文: 史松林, 帕孜来马合木提. 结合Transformer和CNN的超声心动图左心室分割算法[J]. 计算机辅助设计与图形学学报.
Left Ventricular Segmentation Algorithm for Echocardiography Combining Transformer and CNN[J]. Journal of Computer-Aided Design & Computer Graphics.
Citation: Left Ventricular Segmentation Algorithm for Echocardiography Combining Transformer and CNN[J]. Journal of Computer-Aided Design & Computer Graphics.

结合Transformer和CNN的超声心动图左心室分割算法

Left Ventricular Segmentation Algorithm for Echocardiography Combining Transformer and CNN

  • 摘要: 针对超声心动图因噪声大、左心室边缘模糊, 造成分割困难和分割结果不准确的问题, 提出一种结Transformer和CNN的左心室分割算法HeartNet. 首先, 利用2种网络构架高效地捕捉全局特征和局部细节; 其次, 使用卷积注意力设计特征融合模块, 自适应融合来自Transformer和CNN分支的特征; 最后, 引入桥注意力模块并根据3层融合特征计算注意力特征图, 得到更精确的分割结果. 为验证HeartNet的性能, 在大型心脏图像数据集EchoNet-Dynamic上进行训练、验证和测试, 测试Dice Coefficient达到92.41%, 分割性能优于参与对比的其他6种算法. 在临床病人的超声图像上测试, 可视化和临床医生的盲审结果说明了该算法的有效性. 实验结果表明, HeartNet可以精确地分割左心室, 为心脏疾病诊断提供可靠的计算机辅助.

     

    Abstract: To address the problem of difficult and inaccurate segmentation of left ventricle due to high noise and fuzzy edge in echocardiography, we propose a left ventricle segmentation algorithm HeartNet that combines Transformer and CNN. First, we use two network architectures to efficiently capture global features and local details. Second, we design a feature fusion module using convolutional attention to adaptively fuse features from Transformer and CNN branches. Finally, we introduce a bridge attention module and calculate attention feature maps based on three-layer fusion features to obtain more accurate segmentation results. To validate the performance of HeartNet, we train, validate and test it on a large-scale cardiac image dataset EchoNet-Dynamic, achieving a Dice Coefficient of 92.41%, which outperforms six other algorithms involved in comparison. We test it on clinical patients’ ultrasound images, and the visualization and blind review results by clinical doctors demonstrate the effectiveness of this algorithm. The experimental results show that HeartNet can accurately segment left ventricle, providing reliable computer assistance for cardiac disease diagnosis.

     

/

返回文章
返回