高级检索
康杨雨轩, 石剑, 任丽欣, 刘艳丽, 吴恩华. 影子辅助的三维人体重建[J]. 计算机辅助设计与图形学学报.
引用本文: 康杨雨轩, 石剑, 任丽欣, 刘艳丽, 吴恩华. 影子辅助的三维人体重建[J]. 计算机辅助设计与图形学学报.
3D Human Body Reconstruction with Shadow[J]. Journal of Computer-Aided Design & Computer Graphics.
Citation: 3D Human Body Reconstruction with Shadow[J]. Journal of Computer-Aided Design & Computer Graphics.

影子辅助的三维人体重建

3D Human Body Reconstruction with Shadow

  • 摘要: 光线投射至地面的人体影子可以为人体重建任务提供约束信息, 有助于缓解单目图像中的深度歧义问题和自遮挡问题. 本文提出一种基于影子输入的深度神经网络模型用于重建三维人体模型. 首先搭建2个独立的卷积神经网络模块用于提取图像特征和影子特征并估计对应的人体模型参数; 然后建立一个可导投影算子(Differentiable Projection Operator, DPO)对齐2个网络的输出; DPO构建的损失函数应用于微调神经网络和直接优化输出. 在Human3.6M合成影子数据集上的实验表明, 与基线方法相比, 微调网络的关节误差指标下降1.4 mm至4.9 mm. 本文还采集了一个含真实影子的3人2视角小规模数据集. 在该数据集上的定性实验表明, 直接优化的人体姿态更加接近原始图像.

     

    Abstract: Body shadow cast by lights om the ground can provide constraint information for human body reconstruction, which helps to alleviate the depth ambiguity and self-occlusion issues in a single image. In this paper, a deep neural network model based on shadow input is proposed for reconstructing 3D body mesh. First, two independ-ent convolutional neural networks are constructed to respectively extract image feature and shadow feature, and then estimate corresponding body model parameters. Then, a differentiable projection operator (DPO) is formu-lated to align the outputs of two networks. The loss function built on DPO is applied in two scenarios, namely fi-ne-tuning the neural network and directly refining reconstruction results. Experiments performed on Human3.6M with synthetic shadow showed that mean per joint position error of the fine-tuned network decreased from 1.4 mm to 4.9 mm compared with baseline methods. A small-scale dataset of 3 actors and 2 views with the real shadow is captured. Qualitative results on this dataset demonstrated that directly refined body pose better matches the original image.

     

/

返回文章
返回