基于术中X线片的髓内钉远端孔深度学习定位方法
A Deep-Learning Method Using Intraoperative X-ray Images for Locating Distal Holes of Intramedullary Nails
-
摘要: 通过深度特征提取与髓内钉孔轴线深度回归, 提出一种基于术中2张不同角度X线片, 精准定位髓内钉远端孔的方法. 首先, 通过目标检测算法提取X线片中的髓内钉轮廓, 并使用深度神经网络预测远端孔轴线在二维成像平面中的投影; 然后根据双平面相交的方法, 初步确定远端孔的空间位姿; 最后利用髓内钉轮廓信息, 使用协方差矩阵自适应进化策略算法进行位姿迭代修正. 在模拟环境与临床环境中, 将所提方法计算得到的远端孔轴线与真实远端孔轴线进行比较的实验结果表明, 模拟环境中, 两轴线平均距离误差为0.34 mm.平均角度误差为0.35 °; 临床环境中, 两轴线平均距离误差为0.68 mm, 平均角度误差为0.72 °. 该方法能满足髓内钉手术中远端孔精准定位的临床需求, 可有效地提高髓内钉远端锁钉术中定位效率.
Abstract: Based on two intraoperative X-ray images at different angles, a method to accurately locate the distal hole is proposed through deep feature extraction and deep regression of the hole axis. Firstly, the nail’s contour is extracted by the object detection algorithm, and the deep neural network is used to predict the projection of the hole’s axis in the imaging plane. Then, the 3D axis pose of the distal hole is preliminarily determined according to the dual-plane intersection. Finally, using the contour information of the nail, the covariance matrix adaptation evolutionary strategies algorithm is used for pose iterative correction. The experiments are carried out in the simulated and clinical environments, and the distal hole’s axis calculated by this method is compared with the actual hole’s axis. In the simulated environment, the average distance error is 0.34 mm, and the average angle error is 0.35 °. Furthermore, the clinical experimental results show that the average distance error is 0.68 mm, and the average angle error is 0.72 °. The method can meet the actual surgical needs of distal hole location; and improves the efficiency of location and planning in the distal locking nail surgery.