高级检索
刘宝龙, 周森, 董建锋, 谢满德, 周胜利, 郑天一, 张三元, 叶修梓, 王勋. 基于骨架的人体动作识别技术研究进展[J]. 计算机辅助设计与图形学学报.
引用本文: 刘宝龙, 周森, 董建锋, 谢满德, 周胜利, 郑天一, 张三元, 叶修梓, 王勋. 基于骨架的人体动作识别技术研究进展[J]. 计算机辅助设计与图形学学报.
Research Progress in Skeleton-based Human Action Recognition[J]. Journal of Computer-Aided Design & Computer Graphics.
Citation: Research Progress in Skeleton-based Human Action Recognition[J]. Journal of Computer-Aided Design & Computer Graphics.

基于骨架的人体动作识别技术研究进展

Research Progress in Skeleton-based Human Action Recognition

  • 摘要: 近年来, 随着深度学习技术的发展, 已有很多新颖的基于骨架的人体动作识别算法被提出, 极大地推动了该领域的发展. 本文旨在对基于骨架的人体动作识别领域的主要数据集和算法进行一个全面细致的总结. 首先对NTU, Kinetics-Skeleton和SYSU 3DHOI等骨架相关的主要数据集进行了回顾; 然后, 将基于骨架的人体动作识别算法归纳为监督学习、半监督学习和无监督学习3大类, 并进一步对分属不同类别的主要算法进行了介绍和比较; 最后, 分析总结得出该领域当前面临过度依赖大数据、大算力和大模型等挑战, 并针对性提出缓解以上挑战的3点未来发展方向: 高精度骨架数据集建设、细粒度骨架动作识别和数据有效学习的骨架动作识别.

     

    Abstract: In recent years, with the development of deep learning technology, many novel skeleton-based human action recognition algorithms have been proposed, which has greatly promoted the development of this field. This paper aims to give a comprehensive and detailed summary of the main datasets and algorithms in the field of skeleton-based human action recognition. First, the main skeleton-related datasets such as NTU, Kinetics-Skeleton, and SYSU 3DHOI are reviewed. Then, the skeleton-based human action recognition algorithms are summarized into three categories of supervised learning, semi-supervised learning, and unsupervised learning, the main algorithms of each category are further introduced and compared. Finally, challenges that the field is currently facing, i.e., over-reliance on big data, large computing power, and large models, are concluded, and three future development directions are proposed to alleviate the above challenges: high-precision skeleton dataset construction, fine-grained skeleton-based action recognition, and skeleton-based action recognition with data-efficient learning.

     

/

返回文章
返回