高级检索
康健梓, 周虹. 基于力导向布局的知识图谱可视化方法[J]. 计算机辅助设计与图形学学报.
引用本文: 康健梓, 周虹. 基于力导向布局的知识图谱可视化方法[J]. 计算机辅助设计与图形学学报.
Jianzi Kang, Hong Zhou. Force-Directed Layout Based Knowledge Graph Visualization Method[J]. Journal of Computer-Aided Design & Computer Graphics.
Citation: Jianzi Kang, Hong Zhou. Force-Directed Layout Based Knowledge Graph Visualization Method[J]. Journal of Computer-Aided Design & Computer Graphics.

基于力导向布局的知识图谱可视化方法

Force-Directed Layout Based Knowledge Graph Visualization Method

  • 摘要: 知识图谱数据是由自然语言处理模型在海量文本文献中提取出来的具有实体间关系的一种典型网络结构数据, 而网络结构数据的主流可视化方法是使用力导向布局的节点链接图. 传统力导向布局的节点链接图没有考虑知识图谱数据中的实体标签和关系标签信息, 导致结果中存在实体节点和关系链接的分布较为随机的问题. 首先对知识图谱数据进行数据准备, 以获得规模合适的知识图谱子图数据; 然后在力导向布局中加入3种新力, 使得改进后的布局可以更好展示知识图谱中实体之间的关系、实体和关系标签类型; 最后引入边绑定技术并提供基本的交互技术来提升方法的可视效果和交互功能. 方法与其他力导向布局方法相比, 在具有3万个实体的医疗知识图谱数据和具有2百万个实体的网络黑产知识图谱数据上, 整体布局在细节上更有规律, 可读性更好.

     

    Abstract: Knowledge graph data is a typical network data with inter-entity relationships extracted by natural language processing models from a large amount of text documents, and the major visualization method for network data is using node-link diagrams with force-directed layout. The traditional node-link diagrams with force-directed layout do not take into account the information of entity labels and relationship labels in the knowledge graph data, which leads to the problem of random distribution of entity nodes and relationship links in the layout results. Firstly, the knowledge graph data is preprocessed to obtain the knowledge graph subgraph data with appropriate size. Secondly, 3 new forces are added to the force-directed layout so that the improved layout can better display the relationships between entities, entities and relationship label types in the knowledge graph. Finally, edge bundling techniques are introduced and basic interaction techniques are provided to enhance the visualization and interaction of the method. Compared with other force-directed layout methods, the layout result is more regular in details and more readable on medical knowledge graph data with 20 thousand entities and the cyber blackmail knowledge graph data with 2 million entities.

     

/

返回文章
返回