高级检索
马昱欣, 曹震东, 陈为. 可视化驱动的交互式数据挖掘方法综述[J]. 计算机辅助设计与图形学学报, 2016, 28(1): 1-8.
引用本文: 马昱欣, 曹震东, 陈为. 可视化驱动的交互式数据挖掘方法综述[J]. 计算机辅助设计与图形学学报, 2016, 28(1): 1-8.
Ma Yuxin, Cao Zhendong, Chen Wei. A Survey of Visualization-Driven Interactive Data Mining Approaches[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(1): 1-8.
Citation: Ma Yuxin, Cao Zhendong, Chen Wei. A Survey of Visualization-Driven Interactive Data Mining Approaches[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(1): 1-8.

可视化驱动的交互式数据挖掘方法综述

A Survey of Visualization-Driven Interactive Data Mining Approaches

  • 摘要: 数据挖掘是一种从大量数据中发现信息的过程,其大量依赖自动算法的特质,使得用户难以对数据和算法过程本身直观地进行理解、探索和优化.近年来,随着可视化领域的蓬勃发展,有很多工作开始探究如何使用可视化方法辅助数据挖掘过程,使用户更加直观地理解数据,并对数据和算法和进行探索.文中首先对数据挖掘和可视化在知识提取流程进行比较分析,并从可视化增强的通用数据挖掘方法和面向应用场景的方法 2个方面对近年相关技术进行梳理总结,并依托一些相关主题的国际会议内容指出需要进一步探索的方向.

     

    Abstract: Data mining is dedicated to retrieve knowledge from massive datasets by utilizing automated algorithms. However, due to the characteristic of automation processes, current data mining approaches can hardly allow the user to visually understand, explore and optimize the datasets and the computation process. Recently an increasing number of researchers in the field of visualization have been focusing on visualization-based interactive data mining approaches. With the assistance of visualization, users can gain insight and perform exploration from datasets and the mining results intuitively. In this paper we compare data mining and visualization process from the aspect of knowledge discovery. Additionally we classify the recent works into two main categories: 1) visual-enhanced general data mining approaches, and 2) application-based approaches. Additionally we propose a set of future challenges according to recent related conferences.

     

/

返回文章
返回