高级检索
张金标, 陈科. 并行设计任务调度的自适应蚁群算法[J]. 计算机辅助设计与图形学学报, 2010, 22(6): 1070-1074.
引用本文: 张金标, 陈科. 并行设计任务调度的自适应蚁群算法[J]. 计算机辅助设计与图形学学报, 2010, 22(6): 1070-1074.
Zhang Jinbiao, Chen Ke. An Adaptive Ant Colony Algorithm for Concurrent Design Task Planning Problem[J]. Journal of Computer-Aided Design & Computer Graphics, 2010, 22(6): 1070-1074.
Citation: Zhang Jinbiao, Chen Ke. An Adaptive Ant Colony Algorithm for Concurrent Design Task Planning Problem[J]. Journal of Computer-Aided Design & Computer Graphics, 2010, 22(6): 1070-1074.

并行设计任务调度的自适应蚁群算法

An Adaptive Ant Colony Algorithm for Concurrent Design Task Planning Problem

  • 摘要: 针对将蚁群算法应用于任务规划调度问题求解时存在的计算时间长、易出现停滞等缺陷,提出一种具有自适应功能的蚁群算法.通过设计一种路径选择机制来提高蚁群路径的多样性;以蚁群目标值作为路径信息素变化的依据,设计一个动态因子更新路径信息素;使用变异蚂蚁以一个动态比率替换策略更新蚁群.实例仿真结果表明,文中算法具有较强的全局寻优能力和较高的搜索效率,较好地解决了快速收敛与停滞现象之间的矛盾.

     

    Abstract: An adaptive ant colony algorithm(AACA)is established to solve the problems of long computing time and stagnation behavior of the basic ant colony optimization which is applied for concurrent design tasks planning and scheduling.A path selection mechanism is designed for the ant path diversity.The path pheromones is updated according to a dynamic factor of objective function values.Some ants are replaced at a dynamic rate with mutated ants,which leads to the evolution of the colony.Case simulation results show that the AACA has a excellent ability of global optimization and high search efficiency,and can settle the contradiction between convergence speed and stagnation behavior.

     

/

返回文章
返回