高级检索

复杂环境下的鲁棒目标跟踪方法

Robust Tracking under Complex Environments

  • 摘要: 提出一种复杂条件下基于子空间梯度方向直方图跟踪的方法,通过大量样本的离线训练构建目标的投影子空间,并用梯度方向直方图在子空间的投影作为新的目标描述特征.为了满足实时性的要求,采用积分直方图方法提高粒子特征的计算速度;然后结合粒子滤波方法在子空间中计算粒子与训练样本集之间的相似度,进而估计目标的运动参数.实验结果表明,该方法能够在光照变化、噪声干扰、模糊、目标姿态和尺度改变,以及部分遮挡等恶劣条件下实现准确跟踪,比传统的跟踪方法具有更高的跟踪精度和跟踪鲁棒性,能够满足地面侦察任务在多种复杂条件下对感兴趣目标进行准确跟踪的需求.

     

    Abstract: A subspace tracking method is proposed to track targets under complex environments.First,target is represented by subspace histogram of oriented gradient descriptor,which is computed by projecting histograms of oriented gradient descriptor to a subspace,that is built from a large set of training samples before tracking.Then an integral histogram method is incorporated to reduce the computational complexity.By these,the tracking problem is formulated as a state inference problem under the particle filter framework of target motion parameter estimation.Numerous experiments demonstrate the effectiveness of our proposed method in indoor and outdoor environments where the targets are subject to blurring,pose,scale,and illumination changes as well as various other noises.Compared with the traditional template based trackers,our proposed tracking method manifests good performance in the ground reconnaissance application.

     

/

返回文章
返回