高级检索
杨学文, 冯志全, 黄忠柱, 何娜娜. 结合手势主方向和类-Hausdorff距离的手势识别[J]. 计算机辅助设计与图形学学报, 2016, 28(1): 75-81.
引用本文: 杨学文, 冯志全, 黄忠柱, 何娜娜. 结合手势主方向和类-Hausdorff距离的手势识别[J]. 计算机辅助设计与图形学学报, 2016, 28(1): 75-81.
Yang Xuewen, Feng Zhiquan, Huang Zhongzhu, He Nana. Gesture Recognition Based on Combining Main Direction of Gesture and Hausdorff-like Distance[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(1): 75-81.
Citation: Yang Xuewen, Feng Zhiquan, Huang Zhongzhu, He Nana. Gesture Recognition Based on Combining Main Direction of Gesture and Hausdorff-like Distance[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(1): 75-81.

结合手势主方向和类-Hausdorff距离的手势识别

Gesture Recognition Based on Combining Main Direction of Gesture and Hausdorff-like Distance

  • 摘要: 针对目前手势识别方法受手势旋转、平移、缩放的影响,导致手势识别率偏低的问题,提出一种基于手势主方向和类-Hausdorff距离模板匹配的手势识别方法.首先把分割后的手势图像进行标准化处理,并求出标准化图像中的手势主方向;然后根据手势主方向建立二维手势直角坐标系提取空间手势特征;再利用空间手势坐标点分布特征方法对手势进行初步识别;最后利用类-Hausdorff距离模板匹配的思想识别最终的手势.实验结果表明,在光照相对稳定的条件下,该方法能够实时准确地实现手势识别,总体识别率达到95%;对发生旋转的手势识别率能超过90%.

     

    Abstract: Since current gesture recognition algorithms are influenced by rotation, translation and scaling, and which can lead to lower recognition rate, this paper proposes a gesture recognition algorithm which is based on the main direction of gesture and Hausdorff-like distance template matching. Firstly, we converted the segmented gesture image to standardized image and calculated the main direction of gesture in the standardized image. Then, we built a 2D rectangular coordinate system to extract the gesture features. Next, we used the method of hand coordinates distribution features to preliminarily recognize the gesture. Finally, the thought of Hausdorff-like distance was used to recognize the final gesture. Experimental results show that this algorithm can achieve real-time correct gestures recognition in relatively stable light conditions. The overall recognition rate can reach 95% and the recognition rate of rotation gestures is more than 90%.

     

/

返回文章
返回