高级检索
李彭, 陈西江, 赵不钒, 宣伟, 邓辉. 基于方向编码与空洞采样的室内点云物体分割[J]. 计算机辅助设计与图形学学报.
引用本文: 李彭, 陈西江, 赵不钒, 宣伟, 邓辉. 基于方向编码与空洞采样的室内点云物体分割[J]. 计算机辅助设计与图形学学报.
Peng Li, Xijiang Chen, Bufan Zhao, Wei Xuan, Hui Deng. Indoor Point Cloud Object Segmentation Based On Direction CodingAnd Hole Sampling[J]. Journal of Computer-Aided Design & Computer Graphics.
Citation: Peng Li, Xijiang Chen, Bufan Zhao, Wei Xuan, Hui Deng. Indoor Point Cloud Object Segmentation Based On Direction CodingAnd Hole Sampling[J]. Journal of Computer-Aided Design & Computer Graphics.

基于方向编码与空洞采样的室内点云物体分割

Indoor Point Cloud Object Segmentation Based On Direction CodingAnd Hole Sampling

  • 摘要: 针对现有的点云分割方法在处理局部特征时忽略方向信息, 且由于卷积核大小的限制无法有效地提取点云邻域特征等问题, 提出一种同时结合方向编码和空洞采样的点云分割方法, 最大程度扩大网络的局部感受野; 利用图卷积神经网络挖掘局部邻域内点的信息; 使用邻域特征提取层自动加权融合邻域特征为更具有代表性的单个特征点; 结合空间注意力机制, 增加远程点之间的联系. 在S3DIS数据集上进行物体分割实验的结果表明, 所提出的方法的OA和mIoU比PointWeb高1.3%和4.0%, 比基线方法RandLA-Net高0.6%和0.7%, 使用空洞采样与方向编码能够有效地提高点云的语义分割精度.

     

    Abstract: To address the problem that existing point cloud segmentation methods ignore directional information when processing local features and cannot effectively extract point cloud neighborhood features due to the limitation of convolutional kernel size, this paper proposed a method that combined both directional encoding and hole sampling to maximize the local receptive field of the network; used the graphical convolutional neural network to exploit the information of the points in the local neighborhood; applied the neighborhood feature extraction layer to automatically weight and fuse the neighborhood features into more representative individual features; combined with the spatial attention mechanism to increase the connection between remote points. The results of object segmentation experiments on the S3DIS dataset show that the OA and mIoU of the proposed method are, respectively, 1.3% and 4.0% higher than PointWeb, 0.6% and 0.7% higher than the baseline method RandLA-Net, and the use of hole sampling and directional coding can effectively improve the semantic segmentation accuracy of point clouds.

     

/

返回文章
返回