高级检索
胡文玉, 朱雪芳, 易云. 利用Capped核范数正则化的人体运动捕获数据恢复[J]. 计算机辅助设计与图形学学报.
引用本文: 胡文玉, 朱雪芳, 易云. 利用Capped核范数正则化的人体运动捕获数据恢复[J]. 计算机辅助设计与图形学学报.
HU, zhu, yi. Human Motion Capture Data Recovery Using Capped Nuclear Norm Regularization[J]. Journal of Computer-Aided Design & Computer Graphics.
Citation: HU, zhu, yi. Human Motion Capture Data Recovery Using Capped Nuclear Norm Regularization[J]. Journal of Computer-Aided Design & Computer Graphics.

利用Capped核范数正则化的人体运动捕获数据恢复

Human Motion Capture Data Recovery Using Capped Nuclear Norm Regularization

  • 摘要:   结合人体运动数据的低秩性, 将人体运动捕获数据恢复问题建模为低秩矩阵填充问题. 不同于传统方法采用核范数作为矩阵秩函数的凸松弛, 引入非凸的矩阵Capped核范数(CaNN), 建立基于Capped核范数正则化的人体运动捕获数据恢复模型; 接着, 利用交替方向乘子法、结合截断参数自适应学习与(逆)离散余弦傅里叶变换对模型进行快速求解. 最后, 在CMU数据集和HDM05数据集上, 将CaNN模型与经典的TSMC、TrNN、IRNN-Lp和TSPN模型进行对比实验. 通过恢复误差和视觉效果比较, 结果表明, CaNN能够有效地对失真数据进行恢复, 且恢复后的运动序列与真实运动序列逼近度较高.

     

    Abstract: Using the low-rank property of human motion data, the problem of recovering human motion capture data is modeled as a low-rank matrix completion problem. Different from the traditional methods which utilize the nuclear norm as the convex relaxation of rank function, a non-convex matrix Capped nuclear norm (CaNN) is introduced in this paper, and then the recovery model of human motion capture data is established based on the Capped nuclear norm regularization. Next, the model is efficiently solved by using the alternative direction method of multipliers, combined with adaptive learning for the truncated parameter and (inverse) discrete cosine Fourier transform. Finally, the proposed model CaNN is compared with four classical models, i.e., TSMC, TrNN, IRNN-Lp and TSPN, on CMU dataset and HDM05 dataset. By comparing the recovery error and visual effect, the experimental results show that CaNN has a good ability to recover the corrupted motion data, and the recovered motions can well approximate the true ones.

     

/

返回文章
返回