高级检索
王改华, 曹清程, 甘鑫, 翟乾宇. 基于分组残差及变换特征维度的目标检测网络[J]. 计算机辅助设计与图形学学报.
引用本文: 王改华, 曹清程, 甘鑫, 翟乾宇. 基于分组残差及变换特征维度的目标检测网络[J]. 计算机辅助设计与图形学学报.
WANG, Qingcheng CAO, GAN, ZHAI. Object Detection Network Based on Grouped Residuals and Transformed Feature Dimensions[J]. Journal of Computer-Aided Design & Computer Graphics.
Citation: WANG, Qingcheng CAO, GAN, ZHAI. Object Detection Network Based on Grouped Residuals and Transformed Feature Dimensions[J]. Journal of Computer-Aided Design & Computer Graphics.

基于分组残差及变换特征维度的目标检测网络

Object Detection Network Based on Grouped Residuals and Transformed Feature Dimensions

  • 摘要: 针对目标检测网络中低效的特征提取以及重要特征难以聚焦的问题, 基于分组残差及变换特征维度, 提出一种改进的目标检测网络. 首先引入一个主干网络结构G-ResNet50作为特征提取网络, 以充分利用卷积的通道信息核; 然后提出广域感受野空间注意力机制MSA, 以强化重要特征的关注和聚焦能力; 最后比较了不同损失函数的回归效果并采用了最佳的损失函数, 以进一步提高网络检测目标的准确度. 在PASCAL VOC数据集和COCO数据集上进行实验, 结果表明, 在相同的实验环境和设备下, 该网络分别实现了79.1%的mAP和35.7%的AP值, 同时取得了34.1张/秒的FPS, 与FCOS、ATSS、PAA等网络对比, 具有更好的目标检测效果.

     

    Abstract: Aiming at the problem of inefficient feature extraction in the network and the difficulty of focusing important features, an improved object detection network is proposed based on grouping residuals and transforming feature dimensions. First, a backbone network structure G-ResNet50 is introduced as a feature extraction network; then a multiple receptive field spatial attention mechanism is proposed to strengthen the attention and focus ability of important features; finally, the regression effects of different loss functions are compared and the best loss function is adopted. Experimental results show that the proposed network can balance the relationship between calculation and detection accuracy, and capture more global information at the same time, which greatly improves the detection accuracy of the network. Compared with the comparison network, the network achieves better performance on the PASCAL VOC and COCO datasets.

     

/

返回文章
返回