高级检索
连远锋, 陈梦琪. 基于区域能量感知胶囊网络的三维形状匹配方法[J]. 计算机辅助设计与图形学学报.
引用本文: 连远锋, 陈梦琪. 基于区域能量感知胶囊网络的三维形状匹配方法[J]. 计算机辅助设计与图形学学报.
YuanFeng LIAN, MengQi CHEN. 3D Shape Correspondence Based on Region Energy Aware Capsule Network[J]. Journal of Computer-Aided Design & Computer Graphics.
Citation: YuanFeng LIAN, MengQi CHEN. 3D Shape Correspondence Based on Region Energy Aware Capsule Network[J]. Journal of Computer-Aided Design & Computer Graphics.

基于区域能量感知胶囊网络的三维形状匹配方法

3D Shape Correspondence Based on Region Energy Aware Capsule Network

  • 摘要: 针对三维形状匹配中局部形变识别能力不足而导致匹配精度不佳的问题, 提出一种基于区域能量感知胶囊网络的形状匹配方法. 首先基于区域能量合并规则对三维网格过分割子面片进行合并形成模型能量区域; 然后设计一个基于区域能量感知的胶囊网络(REA-CapsNet)来提高特征匹配结果的准确率, 通过能量迁移的知识蒸馏策略对网络模型优化, 进一步提高网络的收敛速度; 最后在功能映射函数中嵌入区域能量约束, 以获取准确率高且鲁棒性强的函数映射矩阵. 在FAUST, SCAPE, TOSCA和KIDS数据集上的实验结果表明, REA-CapsNet的总体平均测地误差分别达到0.075 7, 0.203 2, 0.081 8和0.134 2, 所提方法具有较好的准确性和泛化性.

     

    Abstract: To address the problem of unsatisfy corresponding accuracy due to insufficient local deformation recognition in 3D shape correspondence, we proposed a shape corresponding method based on a region energy aware capsule network. First, the energy regions of the model are formed by merging the over-segmented patches of the 3D mesh based on the regional energy merging rules. Then, a region energy aware capsule network (REA-CapsNet) is designed to improve the accuracy of feature correspondence results. Moreover, the network model is optimized by the knowledge distillation strategy of energy migration to further improve the convergence speed of the network. Finally, the region energy constraint is embedded in the functional maps to obtain the function mapping matrix with high accuracy and robustness. On four datasets of FAUST, SCAPE, TOSCA and KIDS, the overall average geodesic error of REA-CapsNet reaches 0.075 7, 0.203 2, 0.081 8 and 0.134 2 respectively, indicating that the proposed method has great accuracy and generalization.

     

/

返回文章
返回