高级检索

自适应注意力选择与脉冲耦合神经网络相融合的沙漠车辆识别

Desert Vehicle Detection Using Adaptive Visual Attention and Pulse Coupled Neural Network

  • 摘要: 针对现有车辆识别模型不适用于沙漠背景的不足,提出一种基于自适应四元数注意力选择模型与脉冲耦合神经网络相融合的车辆识别算法.首先建立自适应四元数注意力选择模型,将图像背景、颜色、亮度等多方面信息并行处理计算注意力显著图,并利用图像缩放与双线性插值提升计算效率;然后将显著图输入脉冲耦合神经网络,利用神经元脉冲传播特性提取感兴趣区域;最后提取区域尺度不变特征并结合多层分类回归树完成目标识别.实验结果表明,该算法计算时间短、区域提取完整、识别虚警率低;以分辨率0.6m×0.6m的沙漠图像为例,文中算法较形态学及支撑向量机算法识别率分别提升了5.8%和15.4%.

     

    Abstract: Considering deficiency of existing methods in desert vehicle detection, this paper proposes a novel approach for vehicle detection in desert based on adaptive phase spectrum of quaternion Fourier transform (APQFT) combined with pulse coupled neural network (PCNN) .We propose an adaptive visual attention model which uses information of background, image colors and intensity to generate a visual saliency map by parallel computing.Moreover, this model uses bilinear interpolation to improve computing efficiency.After that, using PCNN extracts regions of interests (ROIs) .Then, using scale-invariant feature transform (SIFT) feature extracted from ROIs detects vehicle areas which combines with hierarchical discriminant regression (HDR) tree.The experimental results shows that compared with the morphology and the SVM methods, the recognition rate of proposed approach increases 5.8%and 15.4%respectively.

     

/

返回文章
返回