高级检索
卢裕弘, 朱琳, 封颖超杰, 王斯加, 林正轩, 潘嘉铖, 陈为. ModelLogVis: 面向模型服务的日志异常可视分析方法[J]. 计算机辅助设计与图形学学报.
引用本文: 卢裕弘, 朱琳, 封颖超杰, 王斯加, 林正轩, 潘嘉铖, 陈为. ModelLogVis: 面向模型服务的日志异常可视分析方法[J]. 计算机辅助设计与图形学学报.
ModelLogVis: Log Anomaly Detection Visual Analysis Method for Model Service[J]. Journal of Computer-Aided Design & Computer Graphics.
Citation: ModelLogVis: Log Anomaly Detection Visual Analysis Method for Model Service[J]. Journal of Computer-Aided Design & Computer Graphics.

ModelLogVis: 面向模型服务的日志异常可视分析方法

ModelLogVis: Log Anomaly Detection Visual Analysis Method for Model Service

  • 摘要: 利用深度学习模型训练和运维过程产生的海量日志信息,进行模型的优化与故障排查,是一个当前的研究热点. 针对现有工作缺少模型工作流分析这一挑战,提出了面向模型服务的日志异常可视分析方法ModelLogVis. 采用日志异常检测方法,定位模型工作流中的潜在故障, 帮助用户聚焦主要的故障类型; 并支持用户从数据流、状态、实例性能和原始日志等多个角度,对工作流中的事件进行交互式可视化与分析, 从而快速准确地排查问题; 通过真实的模型服务数据的案例研究和专家访谈, 证明该方法可高效地辅助用户快速挖掘日志中的异常信息.

     

    Abstract: Recently it is a hot topic to utilize massive log information of deep learning models for model optimization and troubleshooting. To address the challenge of model workflow analysis, we propose ModelLogVis, a visual analysis approach for diagnosing log abnormality in model services. Our approach employs a log anomaly detection method to locate the potential faults in the model workflow, guiding users to focus on the significant fault types.  Our integrated visual interface illustrates events of the workflow from multiple perspectives, including dataflow, status, instance performance, and original logs, and supports users to progressively analyze the faults in the workflow. Case studies of real datasets and expert interviews demonstrate that our approach is highly efficient in helping users quickly uncover anomalous information in logs.

     

/

返回文章
返回