高级检索

集成模糊LSA与MIL的图像分类算法

Image Classification by Combining Fuzzy LSA and MIL

  • 摘要: 针对自然图像的分类问题,提出一种基于模糊潜在语义分析(LSA)与直推式支持向量机(TSVM)相结合的半监督多示例学习(MIL)算法.该算法将图像当作多示例包,分割区域的底层视觉特征当作包中的示例.为了将MIL问题转化成单示例问题进行求解,首先利用K-Means方法对训练包中所有的示例进行聚类,建立“视觉词汇表”;然后根据“视觉字”与示例之间的距离定义模糊隶属度函数,建立模糊“词-文档”矩阵,再采用LSA方法获得多示例包(图像)的模糊潜在语义模型,并通过该模型将每个多示例包转化成单个样本;采用半监督的TSVM训练分类器,以利用未标注图像来提高分类精度.基于Corel图像库的对比实验结果表明,与传统的LSA方法相比,模糊LSA的分类准确率提高了5.6%,且性能优于其他分类方法.

     

    Abstract: Focusing on the problem of natural image classification,we propose a novel semi-supervised multi-instance learning(MIL) algorithm based on fuzzy latent semantic analysis(LSA) and transductive support vector machine(TSVM).This algorithm regards each image as a bag,and the low-level visual feature of the segmented regions as instances.In order to convert MIL problem into a standard supervised learning problem,firstly,all the instances in training bags are clustered by K-Means method,and each cluster center serves as a "visual word" to build "visual vocabulary table".Secondly,according to the distance between "visual word" and instance,a fuzzy membership function is defined to establish a fuzzy "term-document" matrix,then LSA method is used to obtain bag's(image's) latent semantic models,which can converts every bag to a single sample.Finally,in order to use the unlabeled images to improve classification accuracy,the semi-supervised TSVM is used to train classifiers.Experimental results on the Corel image set show that compared with the traditional LSA method,the fuzzy LSA classification accuracy is increased by 5.6%,and its performance is superior to other MIL algorithms.

     

/

返回文章
返回