高级检索
舒振宇, 祁成武, 辛士庆, 胡超, 韩祥兰, 刘利刚. 基于密度峰值的三维模型无监督分类算法[J]. 计算机辅助设计与图形学学报, 2016, 28(12): 2142-2150.
引用本文: 舒振宇, 祁成武, 辛士庆, 胡超, 韩祥兰, 刘利刚. 基于密度峰值的三维模型无监督分类算法[J]. 计算机辅助设计与图形学学报, 2016, 28(12): 2142-2150.
Shu Zhenyu, Qi Chengwu, Xin Shiqing, Hu Chao, Han Xianglan, Liu Ligang. Unsupervised 3D Shape Classification Algorithm Using Density Peaks[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(12): 2142-2150.
Citation: Shu Zhenyu, Qi Chengwu, Xin Shiqing, Hu Chao, Han Xianglan, Liu Ligang. Unsupervised 3D Shape Classification Algorithm Using Density Peaks[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(12): 2142-2150.

基于密度峰值的三维模型无监督分类算法

Unsupervised 3D Shape Classification Algorithm Using Density Peaks

  • 摘要: 针对基于内容的三维模型自动分类问题,提出一种密度峰值驱动的三维模型无监督分类算法.首先利用多种特征描述符分别对每个三维模型提取相应的特征向量;然后将得到的特征向量运用鲁棒主成分分析去除噪声并降维;最后通过计算特征向量分布的密度峰值,并配合决策图,以直观的方式确定三维模型分类类别数,最终实现三维模型的无监督分类.实验结果表明,与传统算法相比,该算法具有易于确定分类类别数、准确率高、鲁棒性强等优点.

     

    Abstract: In this paper, we propose an unsupervised classification algorithm by using density peaks for automatic content-based 3D model classification. Firstly, the algorithm extracts multiple kinds of feature vectors for each model in the given shape collection. Secondly, it uses robust principal component analysis to denoise the feature vectors and reduce their dimensions simultaneously. Finally, the algorithm determines the number of categories of the 3D models and realizes an unsupervised classification in an intuitive and visual way by computing the density peaks of the feature vectors' distribution and a corresponding decision graph. Extensive experimental results show that the number of categories of clustering is much easier to determine and the results are more accurate and robust in our algorithm when compared with the traditional algorithms.

     

/

返回文章
返回