高级检索

视频序列中基于多尺度时空局部方向角模式直方图映射的表情识别

Facial Expression Recognition Using Multi-scale Spatiotemporal Local Orientational Pattern Histogram Projection in Video Sequences

  • 摘要: 针对局部二元模式在概念上是无方向性的,不能充分捕捉详细信息的问题,提出局部方向角模式(LOP)方法.该方法通过比较2个近邻点上2个方向角的差值来标注图像中的像素点,对邻域内方向角差值的变化进行编码;将LOP扩展到三维空间,提出时空局部方向角模式(SLOP),将从3个正交平面上提取到的特征串接成一个向量;最后采用多尺度SLOP直方图作为人脸表征,并将其投影到保局映射空间以获取低维特征.在Cohn-Kanade与MMI人脸表情数据库上的实验结果表明,文中方法在识别准确率和识别速度方面都优于已有方法.

     

    Abstract: Local binary pattern(LBP) is conceptually regarded as non-oriented,so it cannot capture sufficiently detailed information.Aiming at the problem,the local orientational pattern(LOP) method is proposed.It labels the pixels of the image by comparing two orientational differences at two neighboring pixels and encodes the change of the neighborhood orientational difference.Then LOP is extended to three-dimensional space,the spatiotemporal local orientational pattern(SLOP) is presented.The features obtained from three orthogonal planes are concatenated into a single vector.Finally the multi-scale SLOP histogram is used as face representation and projected onto locality preserving projection space to obtain lower-dimensional feature.Experimental results on Cohn-Kanade and MMI facial expression databases demonstrate that the proposed method outperforms other existing approaches in recognition rate and recognition speed.

     

/

返回文章
返回