高级检索

代数双曲B样条基的几乎严格全正性

Almost Strictly Total Positivity of AH B-Spline Bases

  • 摘要: 样条基的几乎严格全正性和曲线插值适定性关系密切,是几何造型中一个基本且重要的问题.文中证明了代数双曲B样条基具有几乎严格全正性:首先引入代数双曲B样条函数,通过嵌入节点算法推导出函数的零点数和变差数之间的关系;进一步,利用数学归纳法证明了该基具有几乎严格全正性.文中的证明方法直观且具有几何性,为造型中使用代数双曲B样条基奠定了更为完备的理论基础.

     

    Abstract: Almost strictly total positivity is highly related with the poisedness of curve interpolation problem.It is living a basic status in the bases theory.A geometrical approach is proposed to prove the collection matrices of AH B-spline bases are almost strictly totally positive matrices.Firstly,AH B-spline function is introduced.Using knot inserted algorithm,the relationship between the number of zero points and the number of coefficient variations can be deduced.Finally,using mathematical induction,almost strictly total positivity of AH B-spline bases can be proved.The approach is intuitive and geometrical.

     

/

返回文章
返回