高级检索

双奇次NUAHT样条

NUAH T-splines of Odd Bi-degree

  • 摘要: 针对T样条无法精确表示双曲超越曲面的问题,构造了一种样条曲面——双奇次代数双曲T样条曲面(NUAH T样条),探讨了其细分算法和调配函数的线性无关性.通过将非均匀代数双曲B样条曲面(NUAH B样条曲面)定义在T网上,给出了双奇次NUAH T样条的定义;基于NUAH B样条的节点插入公式,提出NUAH T样条的一种局部细分算法;并证明了NUAH T样条的调配函数线性无关的充要条件,即由NUAH T样条转化为NUAH B样条曲面的过渡矩阵是满秩矩阵.最后,通过实例验证了曲面构建和细分算法的有效性.

     

    Abstract: Since T-splines cannot represent hyperbolic spline surfaces exactly,this paper presents a kind of spline surfaces,called non-uniform algebraic hyperbolic T-spline surfaces(NUAH T-splines for short) of odd bi-degree.The NUAH T-splines are defined by applying the T-spline framework to the non-uniform algebraic hyperbolic B-spline surfaces(NUAH B-spline surfaces).Based on the knot insertion of NUAH B-splines,a local refinement algorithm for NUAH T-splines of odd bi-degree is shown.This paper proves that,for any NUAH T-spline of odd bi-degree,the linear independence of its blending functions can be determined by computing the rank of the NUAH T-spline-to-NUAH B-spline transformation matrix.Finally,the examples verify the effectiveness of the local refinement algorithm of NUAH T-splines.

     

/

返回文章
返回