高级检索
陈谊, 刘莹, 田帅, 范春林, 孙悦红. 食品安全大数据可视分析方法研究[J]. 计算机辅助设计与图形学学报, 2017, 29(1): 8-16.
引用本文: 陈谊, 刘莹, 田帅, 范春林, 孙悦红. 食品安全大数据可视分析方法研究[J]. 计算机辅助设计与图形学学报, 2017, 29(1): 8-16.
Chen Yi, Liu Ying, Tian Shuai, Fan Chunlin, Sun Yuehong. A Survey of Visual Analytical Techniques for Big Data in Food Safety Field[J]. Journal of Computer-Aided Design & Computer Graphics, 2017, 29(1): 8-16.
Citation: Chen Yi, Liu Ying, Tian Shuai, Fan Chunlin, Sun Yuehong. A Survey of Visual Analytical Techniques for Big Data in Food Safety Field[J]. Journal of Computer-Aided Design & Computer Graphics, 2017, 29(1): 8-16.

食品安全大数据可视分析方法研究

A Survey of Visual Analytical Techniques for Big Data in Food Safety Field

  • 摘要: 食品安全数据可视分析作为一个新兴交叉研究领域,通过先进的交互式可视化工具帮助食品安全领域人员快速分析数据的分布态势、探寻数据间隐含关联、提升认知和分析能力、提高食品安全监管的科学性和有效性.文中从食品安全数据可视化的必要性和内在需求出发,介绍食品安全数据普遍具有的高维、多元、层次、时空、关联等基本特征,总结梳理了已有适合对食品安全数据的可视化以及可视分析方法和系统,对食品安全大数据可视化及可视分析未来的发展趋势进行了展望.

     

    Abstract: As a new interdisciplinary research field, visual analysis techniques for big data on food safety can help field researchers to observe the data distribution trends and explore the implicit relationships among data rapidly through advanced interactive visualization tools. So that it can enhance human's cognitive ability and analysis ability, and improve scientificity and effectiveness of the food safety supervision and management. In this paper, we first introduce the necessity of visualization and analysis requirements of food safety data, then describe the common characteristics of food safety data, such as high dimension, multivariate, hierarchy, geo-temporal and association, gives the survey of the existing visualization and visual analysis techniques and systems that are suitable for food safety data. And last, we give the future development trend of food safety data visualization and visual analytics techniques.

     

/

返回文章
返回