高级检索

基于梯度Gabor直方图特征的表情识别方法

Expression Recognition Method Based on Gradient Gabor Histogram Features

  • 摘要: 针对传统Gabor特征在表情识别上的局限性,提出一种基于梯度Gabor直方图(GGH)特征的表情识别方法.首先对预处理后的人脸图像进行Gabor特征提取;然后将相同尺度、不同方向的Gabor特征按照梯度方向构造Gabor特征融合图,再对融合图进行分块并计算每个子块的直方图分布,从而构成人脸的GGH特征;最后采用支持向量机对GGH特征进行人脸表情分类.在JAFFE库与Pain Expressions库上进行交叉验证的结果表明,在保证较高识别率时,GGH特征比传统的Gabor特征实时性更高.

     

    Abstract: In order to overcome the limitation of traditional Gabor features in expression recognition, an expression recognition method based on gradient Gabor histogram (GGH) features is proposed.Firstly the fusion rule of gradient direction is used for fusing the original Gabor features on the same scale and different directions after pretreatment.Then GGH features are extracted from block histogram features of Gabor feature fusion diagram.Finally, facial expression classification are achieved by using support vector machine.Experimental results in JAFFE database and Pain Expressions database show that GGH features are more real-time than the traditional Gabor features when the higher recognition rate is ensured.

     

/

返回文章
返回