一种基于样本有效性和KNN分类标记的采样传播型抠图方法
A Sampling-Propagation Matting Method Based on Sample Validity and KNN Classification Labeling
-
摘要: 传统的采样传播型抠图方法都是先对图像进行采样抠图处理再传播抠图处理,没有根据样本的有效性对图像区域进行区分处理.为此,提出一种自适应的采样传播抠图方法,根据样本的有效性决定未知区域使用采样抠图处理还是传播抠图处理.该方法使用采样抠图方法对未知区域进行处理,并提出一种样本有效性综合判定方法对结果进行判定,通过判定的采样抠图结果将作为第1类初始矩阵数据输入传播抠图;对于未能通过判定的区域,提出一种基于KNN分类器标记方法进行处理,处理结果作为第2类初始矩阵数据输入传播抠图,该标记方法用于提高图像的传播性,从而提升后续传播抠图方法的抠图质量;在后续的传播抠图处理步骤中,针对不同的数据来源设定不同的权值,最终结果由传播抠图方法来完成.文中通过定性观察和定量分析相结合的方式对实验结果做出评价,并通过在线标准评价对实验结果进行评估.实验结果证明,文中方法不仅能够在有效样本缺失和图像结构复杂的情况下取得不错的抠图效果,而且具有很高的运算速度.Abstract: The sampling-propagation matting method has the disadvantage of not separately processing the image region based on the validity of the samples. This paper proposes an adaptive sampling-propagation matting method, which uses the samples validity to combining sampling method or propagation method when matting an image. We begin with using sampling matting method to process the unknown area. And then we propose a comprehensive criterion to judge the samples validity of the sampling matting. If the sampling matting results satisfy the criterion, the results will be output as the first kind of initial matrix elements to following propagation matting method; otherwise, we propose a labeling algorithm base on the KNN classifier to process the area, and the results will be output as the second kind of initial matrix elements propagation matting. The marking algorithm is used for improving the propagation ability and for enhancing propagation matting result. In the following steps, we set different weights value to the two kinds of matrix elements, which will be used as propagation matting method to get the final results. We evaluate the experiment results with the qualitative observation and quantitative analysis. The experiments show that the proposed method has a good results in situation of missing the valid samples and comprehensive image structure, and has a very fast computing speed.