融合SFM和动态纹理映射的视频流三维表情重建
3D Facial Expression Reconstruction from Video via SFM and Dynamic Texture Mapping
-
摘要: 为从未标定的单目视频序列中重建出具有真实感的三维人脸表情序列,提出一种仅需较少约束的自动化方法.首先用ASM算法从视频首帧自动标定人脸特征,并采用仿射矫正光流方法跟踪运动中的人脸特征;然后结合一般人脸模型,采用从运动恢复形状的方法重建出三维个性化人脸模型以及表情运动;最后采用动态纹理映射来代替传统的静态纹理映射,以产生真实感视觉外观.另外,使用基于特征脸的图像压缩方法,在尽量保持图像质量的前提下缩小原始视频占用的存储空间.实验结果表明,该方法能产生具有相当真实感的三维人脸表情序列,且在时间域和空间域上都保持了较高性能.Abstract: We propose an automatic approach to reconstruct realistic 3D facial expressions from un-calibrated monocular video sequences with little constraint.By the approach,the affine rectified optical flow method is first used to track facial features automatically aligned with ASM algorithm in the first frame.Secondly,3D personalized face model and 3D expressions are reconstructed by shape from motion algorithm with the help of a generic face.At last,dynamic texture mapping is applied instead of traditional static texture mapping to generate more realistic facial appearance.Furthermore,eigenface based image compression method is adopted to save the storage space while the image quality is well maintained.Experiments show that our approach can be applied to generate quite realistic 3D facial expressions while keeping high performance in both time and space domains.