高级检索
姚婷婷, 米富横, 曹福笑, 胡青. 判别区域感知增强的细粒度遥感目标检测[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.null.2023-00720
引用本文: 姚婷婷, 米富横, 曹福笑, 胡青. 判别区域感知增强的细粒度遥感目标检测[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.null.2023-00720
Tingting Yao, Fuheng Mi, Fuxiao Cao, Qing Hu. Discriminative Region Perception Enhancement for Fine-Grained Remote Sensing Object Detection[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.null.2023-00720
Citation: Tingting Yao, Fuheng Mi, Fuxiao Cao, Qing Hu. Discriminative Region Perception Enhancement for Fine-Grained Remote Sensing Object Detection[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.null.2023-00720

判别区域感知增强的细粒度遥感目标检测

Discriminative Region Perception Enhancement for Fine-Grained Remote Sensing Object Detection

  • 摘要: 遥感图像中通常包含较多目标, 由于很难提取有效的类别判别信息, 现有遥感目标检测方法存在较多类别混淆现象. 为此, 提出一种判别区域感知增强的细粒度遥感目标检测方法. 首先在特征提取骨干网络中构建判别信息提取模块, 利用判别特征增强-抑制策略持续挖掘目标中易被忽略的局部细节信息, 增强网络对不同种类目标的特征描述力; 然后构建目标感知增强模块, 利用特征选择模块增强不同尺度下的特征描述力, 并采用多个不同大小卷积核的卷积层和跳连接操作提高浅层网络的目标感知力; 最后受到Transformer网络自注意力机制启发, 构建自注意力特征增强模块, 突出待检测目标的特征信息, 减少复杂背景对目标分类准确性的干扰. 在细粒度遥感目标检测数据集DOSR与HRSC2016上的实验结果表明, 所提方法的平均准确率分别达到72.04%和84.38%; 定性和定量的实验结果表明, 该方法对不同类别的遥感目标均具有良好的检测准确性和鲁棒性.

     

    Abstract: Remote sensing images often contain numerous objects. Since it is challenging to extract effective category discrimination information, the existing remote sensing object detection methods suffer from categories confusion phenomenon. Therefore, a discriminative region perception enhancement method has been proposed for fine-grained remote sensing object detection. First, a discriminative information extraction module is constructed within the feature extraction backbone network. With the help of discriminative feature enhancement and suppression strategies, local details information of objects that are easily overlooked could be continuously extracted, the features representation power of the network for different types of objects are enhanced. Second, an object perception enhancement module is built, which utilizes the feature selection module to enhance the multi-scale feature description power. Besides, multiple convolution layers with different kernel sizes and skip connections are added to improve the object awareness of shallow layer. Finally, inspired by self-attention mechanism in transformer network, a self-attention feature enhancement module is constructed to highlight the features of detected objects and reduce interference of complex backgrounds on the accuracy of object classification. The experiments on the fine-grained remote sensing object detection datasets DOSR and HRSC2016 indicate that the proposed method achieves mean average precision of 72.04% and 84.38%. Qualitative and quantitative experiments indicate that the proposed method exhibits superior accuracy and robustness in detecting various categories of remote sensing objects.

     

/

返回文章
返回