高级检索
江泽涛, 廖培期, 黄钦阳, 黄景帆. 基于向量符号架构-域适应网络的低照度图像语义分割方法[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.null.2023-00555
引用本文: 江泽涛, 廖培期, 黄钦阳, 黄景帆. 基于向量符号架构-域适应网络的低照度图像语义分割方法[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.null.2023-00555
Zetao Jiang, Peiqi Liao, Qinyang Huang, Jingfan Huang. A Low-light Image Semantic Segmentation Method Based on VSA-DANet[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.null.2023-00555
Citation: Zetao Jiang, Peiqi Liao, Qinyang Huang, Jingfan Huang. A Low-light Image Semantic Segmentation Method Based on VSA-DANet[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.null.2023-00555

基于向量符号架构-域适应网络的低照度图像语义分割方法

A Low-light Image Semantic Segmentation Method Based on VSA-DANet

  • 摘要:       语义分割作为计算机视觉中的基本任务之一, 在诸多实际应用领域起着重要作用. 由于低照度图像光照不足, 从而存在图像亮度、对比度、信噪比低等现象, 导致低照度图像语义分割难度增大. 针对上述情况, 本文提出一种基于VSA-DANet(Vector Symbolic Architectures-Domain Adaptive Network)的低照度图像语义分割方法.VSA-DANet首先将基于向量符号架构的图像翻译网络和域适应语义分割网络融合在一起, 将正常照度图像翻译为低照度图像, 减少域之间的风格差异, 从而提高低照度图像的分割精度; 然后在图像翻译网络中提出分层特征映射(Layered Feature Mapping, LFM)模块, LFM模块能更好地将语义分割网络编码器的多层特征向量映射到VSA(Vector Symbolic Architectures)空间, 使翻译图像与低照度图像更相似, 进而提高分割网络的分割精度; 最后在域适应语义分割网络中提出跨域稀有类混合(Cross Domain Rare Class Mixing, CDRCM)方法, CDRCM在域适应的过程中根据低照度图像的伪标签分布情况得到低照度域的稀有类, 再在跨域混合的时候偏向这些稀有类, 从而提高低照度域中稀有类的分割精度. 在Cityscapes→Dark Zurich和Cityscapes→ACDC-night上的实验结果表明, 本文方法与当前主流的低照度图像语义分割方法相比, 在平均交并比上具有较好的提升.

     

    Abstract:      Semantic segmentation, as one of the fundamental tasks in computer vision, plays an important role in many practical applications. Due to insufficient illumination in low-light images, phenomena such as low brightness, contrast, and signal-to-noise ratio occur, making semantic segmentation of low-light images more difficult. To address this issue, this paper proposes a low-light image semantic segmentation method based on VSA-DANet(Vector Symbolic Architectures-Domain Adaptive Network). VSA-DANet first integrates the image translation network based on vector symbolic architectures and the domain adaptive semantic segmentation network.The image translation network translates normal illumination images into low-light images, reducing style differences between domains and improving the segmentation accuracy of low-light images. Then, a Layered Feature Mapping(LFM)module is proposed in the image translation network. The LFM module can better allocate the super-vectors of vector symbolic architectures to the feature vectors of different layers in the semantic segmentation network, making the translated images more similar to low-light images, thus improving the segmentation accuracy of the segmentation network. Finally, a Cross Domain Rare Class Mixing(CDRCM)method is proposed in the domain adaptive semantic segmentation network. CDRCM obtains rare classes in the low-light domain based on the pseudo-label distribution of low-light images during domain adaptation, and biases towards these rare classes during cross-domain mixing, thereby improving the segmentation accuracy of rare classes in the low-light domain. Experimental results on Cityscapes→Dark Zurich and Cityscapes→ACDC-night show that our method has better improvements in terms of mean Intersection over Union compared to the current mainstream low-light image semantic segmentation methods.

     

/

返回文章
返回