高级检索
王雪艳, 杨志明, 宋姚姚, 王学卿, 李亚伟. 基于多级特征融合的自监督对比分类方法[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.null.2023-00403
引用本文: 王雪艳, 杨志明, 宋姚姚, 王学卿, 李亚伟. 基于多级特征融合的自监督对比分类方法[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.null.2023-00403
Xueyan Wang, Zhiming Yang, Yaoyao Song, Xueqing Wang, Yawei Li. Cell Classification Based on Self-Supervision and Multi-Level Feature Fusion[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.null.2023-00403
Citation: Xueyan Wang, Zhiming Yang, Yaoyao Song, Xueqing Wang, Yawei Li. Cell Classification Based on Self-Supervision and Multi-Level Feature Fusion[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.null.2023-00403

基于多级特征融合的自监督对比分类方法

Cell Classification Based on Self-Supervision and Multi-Level Feature Fusion

  • 摘要: 为解决目前细胞分类方法容易受到图像质量影响、标注量不多造成的分类准确率不高的问题,本文提出一种基于多级特征融合的自监督对比分类方法。首先多级特征融合方法在特征提取时可同时提取语义特征信息和空间特征信息,利于识别不同特征形态的阳性细胞。其次自适应对比损失函数将自监督学习应用在尿脱落细胞分类中,促进模型可最大化利用已有标注数据;该损失可根据细胞特征间的相似度大小自动调整损失权重,使模型学习更有区分度的高维特征,提高分类准确率。实验结果表明,本文提出的尿脱落细胞分类方法在测试集上具有较高的敏感性和特异性,相比现有方法敏感性有一定的提升。

     

    Abstract: In order to solve the current problem of missed detection caused by the difficulty in labeling urine exfoliated cell data, the low number of labeled samples, and the low sensitivity of the classification model, a cell classification method is proposed in this paper. First, the multi-level feature fusion module fuses semantic feature information and spatial feature information. Secondly, the adaptive comparison loss function can automatically adjust the loss weight according to the similarity between cell features, so that the model can learn more discriminative high-dimensional features and improve the classification accuracy. The experimental results show that the urine exfoliated cell classification method proposed in this paper has high sensitivity and specificity on the test set, which has a certain improvement in sensitivity compared with the existing methods.

     

/

返回文章
返回