高级检索
李刚, 邵瑞, 李敏, 万洪林, 周鸣乐, 韩德隆. 重新思考工业微小缺陷检测中的掩模降采样和回归损失函数[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.null.2023-00064
引用本文: 李刚, 邵瑞, 李敏, 万洪林, 周鸣乐, 韩德隆. 重新思考工业微小缺陷检测中的掩模降采样和回归损失函数[J]. 计算机辅助设计与图形学学报. DOI: 10.3724/SP.J.1089.null.2023-00064
Gang LI, Rui SHAO, Min LI, HongLin WAN, MingLe ZHOU, DeLong HAN. Rethinking Mask Down Sampling and Regression Loss Function in Industrial Tiny Defect Detection[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.null.2023-00064
Citation: Gang LI, Rui SHAO, Min LI, HongLin WAN, MingLe ZHOU, DeLong HAN. Rethinking Mask Down Sampling and Regression Loss Function in Industrial Tiny Defect Detection[J]. Journal of Computer-Aided Design & Computer Graphics. DOI: 10.3724/SP.J.1089.null.2023-00064

重新思考工业微小缺陷检测中的掩模降采样和回归损失函数

Rethinking Mask Down Sampling and Regression Loss Function in Industrial Tiny Defect Detection

  • 摘要: PCB是重要的精密零部件, 其在生产过程中会出现微小的短路、鼠咬等缺陷. 在微小目标检测中, 边界框回归和图像降采样是决定目标检测性能的关键因素. 然而, 以往的损失函数和降采样方法存在定位不准确等缺点, 这导致缺陷检测收敛缓慢、检测结果不准确. 本文通过改善损失函数和降采样方法以进行更精确的工业微小缺陷检测. 首先, 本文提出了基于面积损失的微小缺陷交并比(TDIOU)损失函数. 其次, 本文提出了基于动态掩膜的降采样方法, 能够帮助检测器在缩小参数矩阵尺寸过程中自动筛选重要特征、次要特征和噪声特征. 最后, 搭建了基于上述掩膜降采样和TDIOU损失函数的一阶段缺陷检测器, 并在北京大学PCB缺陷数据集和Deep PCB数据集上进行了对比实验和消融实验, 验证了本文方法的优势.

     

    Abstract: PCB is an important precision component, and its production process will have tiny short circuits, mouse bites, and other defects. In tiny object detection, bounding box regression and image down sampling are the key factors to determine the object detection performance. However, the previous loss function and down sampling methods have disadvantages such as inaccurate localization, which leads to slow convergence of defect detection and inaccurate detection results. In this paper, we improve the loss function and down sampling methods to perform more accurate industrial tiny defect detection. Firstly, we propose the TDIOU loss function based on the area loss. Secondly, a dynamic mask-based down sampling method is proposed to help the detector automatically filter important features, minor features, and noisy features in the process of reducing the size of the parameter matrix. Finally, a one-stage defect detector based on the above-mask down sampling and TDIOU loss function is built, and comparison experiments and ablation experiments are conducted on the Peking University PCB defect dataset and Deep PCB dataset to verify the advantages of this method.

     

/

返回文章
返回