高级检索

基于视觉感知机制的全景图像质量评价

Panoramic Image Quality Evaluation Based on Visual Perception Mechanism

  • 摘要: 随着虚拟现实技术的普及,全景图像质量评价面临新的挑战。针对现有的全参考方法多为传统指标的简单扩展,而无参考方法虽然依赖深度学习却普遍缺乏可解释性的问题,提出一种基于视觉感知机制的全参考全景图像质量评价方法。首先融合等距矩形投影和立方体映射投影的优势,并在离散余弦变换域计算结构相似性指数,以更准确地捕捉关键结构特征;然后引入赤道偏置因子强化方法对人类视觉注意特性的符合性。在CVIQD和MVAQD数据库上进行实验,并与现有的全景图像质量评价算法进行对比的结果表明,所提方法的皮尔逊线性相关系数(PLCC)和斯皮尔曼等级相关系数(SRCC)均优于对比方法,该方法能够有效地提升全景图像质量评价的精度和感知一致性,为优化虚拟现实用户体验提供了技术支撑。

     

    Abstract: With the popularization of virtual reality technology, panoramic image quality assessment faces new chal-lenges. Addressing the issue that existing full-reference methods are mostly simple extensions of tradition-al indicators, while no-reference methods, although relying on deep learning, generally lack interpretabil-ity, this study proposes a full-reference panoramic image quality assessment method based on visual per-ception mechanisms. First, it integrates the advantages of equidistant rectangular projection and cube map-ping projection, and calculates the structural similarity index in the discrete cosine transform domain to more accurately capture key structural features. Then, it introduces the equatorial bias factor to enhance the method's conformity to human visual attention characteristics. Experiments on the CVIQD and MVAQD databases, and comparisons with existing panoramic image quality assessment algorithms, show that the proposed method outperforms the comparative methods in both Pearson linear correlation coefficient (PLCC) and Spearman rank correlation coefficient (SRCC). This method can effectively improve the accu-racy and perceptual consistency of panoramic image quality assessment, providing technical support for optimizing the virtual reality user experience.

     

/

返回文章
返回