高级检索

基于聚类感知增强的信息图表数据集可视分析系统

Perception-Enhanced Visual Analysis System for Analyzing Infographic Datasets

  • 摘要: 为了帮助专家更高效地分析和构建信息图表数据集, 提出一种基于聚类感知增强的数据集可视分析系统. 系统包括控制视图、概览视图和样本视图3个主要模块, 支持数据分析人员对数据集进行层次化探索, 并对样本进行筛选、检查. 首先通过集成类簇形状优化方法和动态颜色分配方法改进用户对类簇的感知, 提升分析的准确率; 然后引入层次化探索机制, 使用户能够系统性地探索、分析大规模数据集. 在信息图表数据集上开展的实际案例研究表明, 所提系统在排除非目标样本、探索信息图表设计空间和针对性地补充数据方面取得显著效果, 采样评测下100%的样本为目标样本, 且总结出的设计空间能够覆盖约94%的采样样本, 验证了该系统能够帮助数据分析人员更直观地理解和分析信息图表数据集, 构建高质量的数据集.

     

    Abstract: We propose a perception-enhanced visual analysis system for constructing and exploring high-quality infographic datasets. The system consists of three modules: control view, grid view and sample view, supporting hierarchical exploration and sample filtering. The system combines convexity-based layout optimization with dynamic color assignment to enhance cluster perception and improve analytical accuracy. A hierarchical exploration workflow then guides users from overview to detail, allowing them to filter out non-target samples, interrogate design variations, and identify gaps for targeted data augmentation. Case studies show the system effectively excludes irrelevant samples, explores the design space, and augments data. Evaluation results reveal that 100% of the sampled data are target samples, and the design space covers approximately 94% of the samples, demonstrating the system's ability to help analysts better understand and build high-quality infographic datasets.

     

/

返回文章
返回