高级检索

SAM2ICAA: 基于视觉大模型的无参考图像色彩准确性评估方法

SAM2ICAA: No-Reference Image Color Accuracy Assessment Via Vision Foundation Models

  • 摘要: 色彩准确性是决定视觉感知质量的重要因素. 针对现有的无参考图像质量评估(NR-IQA)方法主要关注模糊、噪声等结构性失真, 缺乏专门针对色彩保真度进行评估的有效模型和基准数据集的问题, 提出一种基于视觉大模型SAM2的无参考图像色彩准确性评估方法——SAM2ICAA. 该方法旨在无参考条件下实现对图像色彩保真度的客观量化. 首先构建面向色彩准确性评估的基准数据集ICAA-4K, 其涵盖8种常见的合成及真实场景下的色彩失真类型; 然后利用SAM2视觉大模型作为骨干网络, 通过一个多层次特征融合模块整合图像的局部细节和全局语义信息; 最后设计一个双任务回归模块, 能够同时预测色彩质量分数和失真类型, 模拟人类“先识别失真后评估质量”的认知机制. 基于ICAA-4K数据集的大量实验表明, SAM2ICAA在评价指标SRCC和PLCC上均超越了现有主流的NR-IQA方法, 可望成为无参考色彩质量评估领域新的技术基准.

     

    Abstract: Color accuracy is a crucial factor in determining perceived visual quality. Existing no-reference image quality assessment (NR-IQA) methods primarily focus on structural distortions such as blur and noise, leading to a lack of effective models and benchmark datasets specifically for evaluating color accuracy. To address this issue, we propose a no-reference image color accuracy assessment method built on the SAM2 vision foundation, named SAM2ICAA. This method aims to achieve objective quantification of image color accuracy under no-reference conditions. First, we construct the ICAA-4K benchmark dataset for color ac-curacy assessment, which encompasses eight common types of color distortion in both synthetic and re-al-world scenarios. Next, the method utilizes the SAM2 as its backbone and integrates local details with global semantic information through a multi-level feature fusion module. Finally, a dual-task regression module is designed to simultaneously predict the color quality score and the distortion type, simulating the human cognitive mechanism of identifying distortion before assessing quality. Extensive experiments conducted on the ICAA-4K dataset demonstrate that SAM2ICAA outperforms existing mainstream NR-IQA methods in terms of SRCC and PLCC, and is expected to become a new technical benchmark in the field of no-reference color quality assessment.

     

/

返回文章
返回