高级检索

频域信息引导的点云法向量估计方法

Frequency-Domain Guided Point Cloud Normal Estimation Method

  • 摘要: 针对深度学习范式下点云法向量估计方法在特征提取过程中对全局信息感知能力不足的问题,提出了一种基于傅里叶频谱分析引导的点云法向量估计方法.首先通过快速傅里叶变换将局部点云块从空间域映射到频域;然后通过分析各频段信息的贡献,将频谱信息按比例划分为高频、中频和低频3个部分,借助频域蕴含的全局结构特性提升点云法向量估计的准确性;最后引入基于学习的自适应策略,对多频段信息进行动态修正,进一步提升法向量估计的精度与鲁棒性.误差估计和三维重建实验结果表明,与空间域信息相比,频域的全局属性能够提供更丰富的内蕴特征,且不同频段信息对法向量估计的影响具有显著差异.该方法在PCPNet,FamousShape和SceneNN这3个公开的标准数据集上均取得较好的性能表现,RMSE指标平均提升约0.5%.

     

    Abstract: To address the insufficient global information perception in feature extraction of point cloud normal estimation under the deep learning paradigm, this paper proposes a Fourier spectrum analysis guided method for point cloud normal estimation. Specifically, local point cloud patches are first mapped from the spatial domain to the frequency domain using Fast Fourier Transform. Then, by analyzing the contribution of different frequency components, the spectrum is proportionally divided into high frequency, mid frequency, and low frequency parts. Leveraging the global structural characteristics inherent in the frequency domain enhances the accuracy of normal estimation. Finally, a learning based adaptive strategy is introduced to dynamically refine the multi frequency information, further improving the precision and robustness of normal estimation. Experimental results on error evaluation and 3D reconstruction demonstrate that compared with spatial domain information, the global properties of the frequency domain provide richer intrinsic features, and the influence of different frequency components on normal estimation varies significantly. The proposed method achieves favorable performance on three public benchmark datasets, namely PCPNet, FamousShape and SceneNN, with an average RMSE improvement of about 0.5%.

     

/

返回文章
返回